Faculty

Colorado School of Mines is a uniquely focused public research university dedicated to preparing exceptional students to solve today's most pressing energy and environmental challenges.

This is Mines.

Eleven students are part of a humanitarian engineering course that is designing plans to relocate a village displaced by mining operations in the Democratic Republic of the Congo in Africa. The course “Projects for People,” taught by corporate social responsibility and Human Centered Design professor Benjamin Teschner, is geared toward students interested in the social challenges associated with the extractive industries and how engineering helps address these problems.

During the first class, Teschner gave each student $20 to design a prototype that would act as a tool to explain to someone living in the village how their lives would change after relocating.

“Commonly, students think of prototypes only as something they build to test their idea or to help themselves as engineers refine a design. What this assignment does is force them to think about how to design a prototype that will show someone else how their idea works so they can engage non-engineers in their design process,” Teschner said. “Students will immediately lay their assumptions about the problem out on the table for everyone to see—assumptions that they didn’t even know they were making.”

Aina Abiina is one of two graduate students in the class. The course is not required for Abiina’s Liberal Arts and International Studies degree, however she chose to enroll because she wanted to learn about the interaction between multi-national companies and people that are affected by these companies’ activities.

“In order to minimize a negative impact on the environment of those people and to optimize the production of the mine, a proper assessment is needed,” said Abiina. “Designing solutions to this complex engineering and social challenge will help students gain valuable skills in human-centered design methods, research techniques, brainstorming tools and approaches.”

Over the next few months, teams in two groups will have three phase gate reviews that will explore problem definition, design exploration and design analysis. The unique thing about this course is that the grades and passage of the phase gates are not linked. Grades are determined instead by how the team works within these phase gates.

“I hope students are able to develop empathy for people who use the things they design and that they recognize by bringing these people into the design process, they can create better, more sustainable engineering outcomes,” Teschner said.

Chemical and Biochemical Engineering student Karyn Burry hopes to end the course with better design flow skills.

“I am a super organized person and that usually is really helpful in a group, but this class is pushing me out of the organizer position into a position where I am forced to think outside the box in attempt to find a solution to this relocation project,” Burry said.

To better understand the village and relocation process, students are working with Thabani Mlilo, manager of sustainability for the America region at AngloGold Ashanti, who is acting as the ‘client’ on the project. Mlilo’s goal is to catalyze a paradigm shift early enough in an engineer’s education so that it is “part of their DNA” and a natural part of how they approach problems or solutions wherever there is a sustainability aspect to their work.

“In the sustainability field, one of the biggest challenges we have is shifting the paradigm of professionals in technical and scientific disciplines to the changing landscape of the business-society interface,” Mlilo said. “My impression of Mines students is that they don’t shy away from a challenge and are not afraid of treading unknown waters.”

For questions about the course, please contact Benjamin Teschner at bteschne@mines.edu.

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / kgilbert@mines.edu

We spend 90 percent of our time indoors (according to the EPA) without realizing that the air we breathe could be potentially dangerous to our long-term health. Civil and Environmental Engineering professor Tissa Illangasekare has spent the last five years researching how volatile organic compounds, which are commonly entrapped as non-aqueous phase liquids (NAPLs) or dissolved into groundwater to produce plumes, affect our indoor air concentration.

“We drink so many liters of water a day, but we inhale so many thousands of liters of air,” Illangasekare said. (According to the EPA, the average American inhales close to 3,000 gallons a day.) “Sometimes we go to a contaminated site, test the water and we find it’s clean but later we go inside the building and find the vapor is contaminated.”

In 2009, Illangasekare and his research group, including a collaborator from the U.S. Air Force Academy, received funding from the Department of Defense Strategic Environmental Research and Development Program Office. The funding allowed the researchers to improve their understanding of the processes and mechanisms controlling vapor generation from entrapped NAPL sources and groundwater plumes, their subsequent migration through the subsurface, and their attenuation in naturally heterogeneous vadose zones under various natural physical, climatic, and geochemical conditions.

As the director of the Center for Experimental Study of Subsurface Environmental Processes, Illangasekare has an advantage. In his lab, he works with students to control experiments in multiscale test systems, studying vapor and airflow through unsaturated soils. The tanks are instrumented with soil moisture, relative humidity and temperature sensors. Using computation models, Illangasekare can predict how various climates affect soil concentrations expected to be found in a building. 

Their hypothesis was that some of this variability could originate from weather and hydrologic cycle dynamics, such as surface heating, rainfall and water table fluctuation.

“We learned how contaminant vapors move preferentially through the ground and make their way into people’s basements or crawl spaces,” said Kathleen Smits, a professor in the Department of Civil and Environmental Engineering, who has worked with Illangasekare for the past five years. “We also discovered how this is influenced by changes in climate (e.g. temperature, wind conditions and precipitation).”

In April 2014, Illangasekare received the 2012 European Geosciences Union's Henry Darcy Medal for his scientific contributions in water resources research and water resources engineering and management. Two months later, he was one of the coauthors on a report to the Strategic Environmental Research and Development Program on “Vapor Intrusion From Entrapped NAPL Sources and Groundwater Plumes: Process Understanding and Improved Modeling Tools for Pathway Assessment.”

“Our research has contributed to fundamentally understanding what’s happening to this system, which will help decision makers and regulatory agencies give better guidelines on how to manage these sites,” he said.

Illangasekare’s research will impact closure decisions on waste sites based on vapor intrusion risks.

“There’s a need for this science to exist. We are training a new generation of scientists and engineers to look at these kinds of problems.”

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / kgilbert@mines.edu

Colorado School of Mines Mechanical Engineering professor Xiaoli Zhang and graduate student Songpo Li have developed a gaze-contingent-controlled robotic laparoscope system that can help surgeons better perform laparoscopic surgery.

Laparoscopy is an operation performed in the abdomen or pelvis through small incisions with a camera. Laparoscopic instruments (typically 0.5-1 centimeters in diameter) are inserted through small incisions and then operated inside a patient’s body together with a laparoscope that allows the surgeon to see the surgical field on a monitor. Unlike open surgery, laparoscopic surgeries have reduced scarring, lessened blood loss, shorter recovery times and decreased post-operative pain. But due to limitations of holding and positioning the laparoscope, surgeons struggle with physiologic tremors, fatigue and the fulcrum effect.

Zhang and Li’s attention-aware robotic laparoscope aims to eliminate some of these physical and mental burdens.

“The robot arm holds the camera so the surgeon doesn’t have to,” Zhang said, noting that the camera is controlled effortlessly. “Wherever you look, the camera will autonomously follow your viewing attention. It frees the surgeon from laparoscope intervention so the surgeon can focus on instrument manipulation only.”

Their system tracks the surgeon’s viewing attention by analyzing gaze data. When the surgeon’s eyes stop on a new fixation area, the robot adjusts the laparoscope to show a different field of view that focuses on the new area of interest.

To validate the effectiveness of this procedure, the team tested six participants on visualization tasks. Participants reported “they could naturally interact with the field of view without feeling the existence of the robotic laparoscope.”

Zhang and Li anticipate that their technologies could have more than just healthcare applications, such as being used for the disabled and the elderly, who may have difficulty with upper-limb movements.

“Using this system, the surgeon can perform the operation solo, which has great practicability in situations like the battlefield and others with limited human resources,” Li said.

In mid September, Li received the Colorado Innovation S.T.A.R.S. challenge award for “Best Technical Achievement” at the college level during the JeffCo Innovation Faire. Zhang and Li are working with clinical researchers and industry partners to commercialize their attention-aware robotic laparoscope.

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / kgilbert@mines.edu

John Spear is a Civil and Environmental Engineering Professor at Colorado School of Mines. Step inside his office in Coolbaugh Hall and you might find some strange items, dating back to 1898. Here are seven of Spear's favorite things in his collection.

John Spear
John Spear in his office in Coolbaugh Hall.

1. Canadian Flag

Spear received the flag from a research trip this summer to Nunavut in northern Canada. Nunavut’s flag features the North Star and inuksuk, the universal symbol of greeting for the north and the symbol for the Vancouver Olympics.

Native people of the north would build stone monuments of that shape to say another human had been there and to guide people through the north.

“When you come across a natural one in the wild, it looks like a human standing with their arms out.”

2. Stromatolite Rocks

Since Spear loves microbes, he loves stromatolite rocks. These rocks are laminated and “thought to record fossilized microbial mass.”

This one is 50 million years old. He also owns one that is 3.2 billion years old from Bolivia.

“I have a lot of rocks in my office even though I’m not a geologist.”

3. Gumball Machine

His daughter gave him this gumball machine when she was 7 years old when she was tired of playing with it. It ran out of gumballs a while ago.

4. 1948 Skis & Baby Beads

Skis: These 1948 wooden skis belonged to Spear’s dad. As one of the first metal-edged skis, they are made with bear trap bindings that “used to break people’s legs.”

Beads: Strung across the skis are two sets of beads. One was his daughter’s baby beads and one is his own pair of baby beads.

5. Styrofoam Cup

The once full-sized coffee cup is now one-inch tall after two of his students took it down to the bottom of the ocean in a basket on a submarine last year. They decorated it with an octopus and the words, “Microbes are everywhere,” before submerging it.

As pressures build during descent, the air slowly compresses and the cup shrunk.

6. Typewriter

Spear’s grandmother was a librarian for the U.S. Navy who loved to type notes. “She was a catalogue of information.” She lived to be 104, and would often read 5-10 newspapers a day.

In her lifetime, his grandmother watched major events, from the invention of the light bulb to the space shuttle launch. Her typewriter recorded it all. She even left notes behind for her family to find on items she owned.

“She documented her whole life by that typewriter.”

7. 1898 Coffee Grinder

This 1898 cast-iron coffee grinder weighs more than 200 pounds. Back in the day, it helped wake up the town of Pasadena, California—where Spear grew up. The man who owned the town store gave it to Spear’s father.

Wood handles turn the cranks that can grind about 4-5 pounds of coffee at a time. After dumping beans into the top, you turn the hand crank and then pull powered coffee out at the bottom. The machine can make different grinds from course to fine.

“People were fine and course grinding coffee for 150 years.”

 

Contact:

Kathleen Morton, Communications Coordinator, Colorado School of Mines / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations, Colorado School of Mines / 303-273-3541 / kgilbert@mines.edu

This story appears in the 2014-15 issue of Mines' research magazine, "Energy & the Earth."

Colorado School of Mines has been known for its prowess in geology since about 1874. Its reputation in biotechnology has taken just a little bit longer to develop – about 130 years longer, give or take.

Mines is making up for lost time. The school’s faculty, researchers and students haVe shed new light on areas as diverse as the nature of blood clots and the microbial role in rust. They have helped make better artificial limbs and developed laser microscopes capable of capturing video of the inner working of cells. They have reengineered algae to produce biofuels and developed scaffolding that could one day give new cartilage a foothold in creaky knees. In short, biological sciences and engineering have arrived at Mines, and in a big way.

The work is diverse, but there are common threads, said David Marr, who heads Mines’ Department of Chemical and Biological Engineering.

“We are an engineering and technology-focused institution— that’s really where our niche is,” Marr said. “It’s in areas of bioengineering, broadly interpreted, that we have a strong role to play.” Those areas, he added, encompass biomedical applications, biomechanics, biomaterials, environmental biotechnology and biofuels.

Recent hires have bolstered several of these research areas, and curriculum has changed in kind, with courses covering a range of biomedical engineering, biomaterials, environmental biotechnology and biophysics available to undergraduate as well as graduate students. In fall 2013, Mines’ freshman biology course moved to a studio format, where small teams of students sit at workstations equipped with computers, dual monitors, video microscopes, digital cameras and digital balances, as well as with more specialized equipment like micropipettes and oxygen, pH and temperature sensors.

Mines Assistant Professor Nanette Boyle is among the recent arrivals, having signed on in August 2013. Like many at Mines, Boyle considers herself an engineer. But she engineers the genomes of algae and cyanobacteria, microscopic plants using the tools of synthetic biology, systems biology and metabolic engineering.

“The overall goal of my research is to make products that replace petroleum using these photosynthetic organisms,” Boyle said.

In her new Alderson Hall lab, stacked incubator shakers swirled the contents of four beakers, their sloshing fluid of varying light green hues under the bright multispectral light. They were filed with the algae Chlamydomonas and the cyanobacteria Synechococcus. Boyle’s work differs from most algae-based biofuel efforts, which aim to fatten up the algae and then harvest them. Rather, she wants to engineer the algae to produce short chain alcohols, isoprene or other hydrocarbons while they keep photosynthesizing away.

“You can get them to create whatever you want if you can find the genes to do it,” Boyle said.

Mines Professor John Spear, a microbiologist, also focuses on the genomics of tiny creatures. The driving questions of his work, though, are big.

“What are the possible benefits of microbes to make human life and/or the environment better?” Spear asked. “How can we put microbes to work in ways we haven’t done before?”

Genetic sequencing has fostered an explosion in what is known of the tree of life, and Spear and colleagues are discovering new organisms at a dizzying pace. In the mid-1980s, there were perhaps 12 known phyla, or kingdoms, of bacteria. Now there are 130 and counting.

“So when you find 10 or 20 phyla of bacteria as we have found in some environments, that’s like walking out your door and discovering plants for the first time,” Spear said.

On the applied side, Spear has focused on a couple of areas, including wastewater treatment and corrosion. Some corrosion is chemical, but microbes, which feed on the electrons metal has to offer, also contribute, to the point that the oil and gas industry has considered flushing wells with antibiotics. Across industry, the failures and replacement costs associated with corrosion cost tens of billions of dollars annually. More precisely understanding the composition and habits of such microbes can help industry develop better countermeasures and lower costs, Spear said.

Much of Mines’ biology-related work involves the biomedical field. A longstanding collaboration involving Marr and Associate Professor Keith Neeves, recently landed a National Institutes of Health grant to study how microbots – tiny spherical machines each about onetwentieth the diameter of a human hair – might be used to deliver clot-busting drugs straight to the blockage in stroke patients. The idea, Marr said, is to inject a swarm of microbots and steer them to clots using magnets outside the body, “A sort of ‘Fantastic Voyage’ kind of thing,” Marr said.

Marr’s Alderson lab has the markings of an experimental physicist’s haunts, with stainless-steel-topped laser tables rife with grids of screw holes, many anchoring lenses and mirrors. The work there focuses on using light and magnetism to, among other things, test the mechanical properties of cells. A floor below, Neeves’ PhD student Abimbola Jarvis bounced between making microfluidic devices of rubbery silicone and adjusting an Olympus microscope where the screen displayed a fluorescence-enhanced time-lapse of a blood clot forming. Neeves’ main interest is in how blood clots form and dissolve, work that has piqued the interest of clinicians at places such as Children’s Hospital Colorado, where Neeves has helped study hemophilia patients.

“We work where physics and hematology meet,” Neeves said.

Down the hall, Assistant Professor Melissa Krebs is working on where joints meet, among other things. She and her students create biopolymers with applications ranging from tissue regeneration (cartilage being one target) to cancer fighting. The trick, she said, is to create polymers that support cell growth or drug delivery for a prescribed amount of time and then dissolve away.

In Krebs’s lab, PhD student Michael Riederer was creating microspheres for use on the drug-delivery side. Among the inputs were genipin, a chemical derived from gardenias, and chitosan from shrimp shells. As the research progresses, he will work on releasing proteins from the microspheres, controlling the pace and volume of release, Krebs said. These proteins might include growth factors for tissue regeneration or growth inhibitors for cancer treatment, she said.

Mines Assistant Professor Anne Silverman works on joints, too, but from a different perspective. With Mines associate professors Anthony Petrella and Joel Bach, she leads Mines’ Center for Biomechanics & Rehabilitation Research.

“The overall theme is improving walking ability in people who have movement disorders,” Silverman said.

Her team takes experimental measurements on patients using near-infrared cameras, voltage sensors to measure muscle excitations and force plates to measure external loads (such as the heel hitting the ground). They then use this data to develop computer simulations of movement. Amputations below the knee have been a focus, but her team also works with patients who have Parkinson’s disease and cerebral palsy. Collaboration partners have ranged from the Center for the Intrepid at Brooke Army Medical Center and the Colorado Neurological Institute at Denver’s Swedish Medical Center.

“We’re creating complex models and simulations of movement to estimate in vivo muscular and joint behavior,” Silverman said. “We’re using an engineering approach to solve biological problems.”

The Colorado School of Mines Colorado Fuel Cell Center hosted the first public demonstration of IEP Technology’s Geothermic Fuel Cell™ (GFC) Oct. 23. This first-ever GFC will enable production of unconventional hydrocarbons, such as oil shale, in an economic and environmentally sustainable way, while producing clean, baseload electricity.

The technology was developed in collaboration with Pacific Northwest National Laboratory/U.S. Department of Energy, TOTAL Petroleum, Delphi Automotive PLC (NYSE: DLPH), and the Colorado Fuel Cell Center at Colorado School of Mines.

“In the Piceance Basin (Northwest Colorado) alone, Colorado’s oil shale reserves are estimated in the trillions of barrels, but there has not been an environmentally responsible or economically viable way to access them,” said Alan Forbes, President and CEO of IEP Technology. “We are now one step closer to recovering oil shale resources while producing clean, reliable energy that will have significant economic impact for Colorado.”

Capital and operating costs of GFC technology are dramatically lower than other technologies when including revenues from surplus power and gases generated in the process. Previous technologies have either used mining/surface production facilities or large amounts of traditional utility-supplied electricity for in-situ technologies, both of which have significant impacts to the environment.

The GFC technology will capture and reuse its own gases produced in the process to become self fueling after startup; can achieve net zero air emissions; and can actually produce water during its operation thus avoiding impact to water needs in arid parts of the state.

IEP Technology’s GFCs use proven and tested solid oxide fuel cell (SOFC) technology from Delphi. GFCs use the heat generated by the fuel cells as the “product,” leaving the clean baseload energy from the fuel cells available to be sold back into the utility grid.

 “We are really excited to apply our knowledge and expertise in fuel cells and oil shale to an innovative industry application like the GFCs,” said Dr. Neal Sullivan, the Colorado School of Mines professor who is also the school’s Director of the Colorado Fuel Cell Center Laboratory.

IEP Technology’s plan is to complete in-situ testing this year to monitor the heat and electrical output of the GFCs. A full-scale GFC field test at a Northwest Colorado oil shale resources site is slated for 2015. Commercialization is expected to follow application validation.

 

About IEP Technology
Independent Energy Partners (IEP) is a clean technology and resource company based in Denver, Colorado focused on the economic and environmentally responsible recovery of unconventional hydrocarbon resources utilizing its patented, breakthrough in-situ Geothermic Fuel Cell(GFC) system. IEP was founded in 1991 and has been involved in the development of more than 15 energy projects employing a wide range of technologies. The company holds exclusive rights to broad, patented GFC processes and technology in the U.S. and Canada as well as its own oil shale resources containing more than 2.0 billion barrels of oil. Patenting and technological development has been underway since 2004 and has been vetted by the US Department of Energy’s Pacific Northwest National Laboratory.  IEP holds strategic partnerships with Total Petroleum, Uintah Resources, Inc., Delphi Corporation and Colorado School of Mines. Learn more about the company and its technology at iepm.com.

About the Colorado Fuel Cell Center at Colorado School of Mines
Colorado School of Mines, mines.edu, is a uniquely focused public research university dedicated to preparing exceptional students to solve today’s most pressing energy and environmental challenges. Founded in 1874, the institution was established to serve the needs of the local mining industry. Today, Mines has an international reputation for excellence in engineering education and the applied sciences with special expertise in the development and stewardship of the earth’s resources.

About Delphi

Delphi Automotive PLC (NYSE: DLPH) is a leading global supplier of technologies for the automotive and commercial vehicle markets.  Headquartered in Gillingham, England, Delphi operates major technical centers, manufacturing sites and customer support services in 32 countries, with regional headquarters in Bascharage, Luxembourg; Sao Paulo, Brazil; Shanghai, China and Troy, Michigan, U.S. Delphi delivers innovation for the real world with technologies that make cars and trucks safer as well as more powerful, efficient and connected. Visit delphi.com.

Contact: 

Kathleen Morton, Communications Coordinator, Colorado School of Mines / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations, Colorado School of Mines / 303-273-3541 / kgilbert@mines.edu
Cindy Jennings, President, Volition Strategies / cindy@volitionstrategies.com

Colorado School of Mines Geophysics Associate Professor Jeff Andrews-Hanna is the lead author of a study documenting the discovery of a giant rectangular structure (roughly 1,600 miles across) on the nearside of the Moon. Using NASA’s Gravity Recovery and Interior Laboratory (GRAIL) data, he is part of a team that examined the subsurface structure of the Procellarum region, also known as the Ocean of Storms. GRAIL scientists believe the Ocean of Storm's rocky outline is the result of ancient rift valleys, and not an asteroid impact as some previous theories suggested. The lava-flooded rift valleys are unlike anything found anywhere else on the Moon, and may at one time have resembled the rift zones on the Earth, Mars and Venus.

GRAIL gravity data is now allowing scientists to look beneath the surface at structures that are hidden from view, using the subtle gravitational pulls on the orbiting spacecraft. “This dataset has provided us with the highest resolution gravity map of any object in the solar system, including the Earth,” explained GRAIL principal investigator Maria Zuber from the Massachusetts Institute of Technology in Cambridge, Massachusetts.

Using the gradients in the gravity data to reveal the rectangular pattern of anomalies, the researchers can now clearly and completely see structures that were only hinted at by previous surface observations. This newly discovered rectangular pattern has an area of approximately 6.5 million square kilometers (or 2.5 million square miles) and covers 17 percent of the surface of the Moon.

“This rectangular structure covers a larger fraction of the surface area of the Moon than do North America, Europe and Asia combined on the Earth,” Andrews-Hanna said. “This goes to show that there are still big discoveries waiting for us on all of the planets."

The rectangular pattern with its angular corners and straight sides is at odds with the notion that Procellarum might be an ancient impact basin, as that hypothesis would predict a circular basin rim. Instead, the new work suggests that internally driven processes dominated the evolution of this region. In contrast, previous work by Andrews-Hanna and colleagues in 2008 used gravity data from Mars to reveal an enormous elliptical structure in the northern hemisphere of that planet, supporting the idea that the northern lowlands of Mars were formed by a giant impact that excavated the ‘Borealis Basin.’ Andrews-Hanna explains, “In two separate studies, we have used gravity data to support the existence of the largest impact basin in the solar system on Mars, and to refute the proposed second largest basin in the solar system on the Moon.”

"Our gravity data is opening up a new chapter of lunar history, during which the Moon was a more dynamic place than suggested by the cratered landscape that is visible to the naked eye," said Andrews-Hanna. More work is needed to understand the cause of this newfound pattern of gravity anomalies, and the implications for the history of the Moon.

GRAIL A and B, later renamed Ebb and Flow, were launched to the Moon in September 2011. The twin spacecraft flew in a nearly circular orbit until the end of the mission on Dec. 17, 2012. The gravity field was measured by tracking the changes in the distance between the spacecraft caused by perturbations to their orbit as they flew over anomalous masses caused by features on the surface or within the subsurface.

The GRAIL mission was managed by JPL, a division of the California Institute of Technology in Pasadena, Calif., for NASA's Science Mission Directorate in Washington. The mission was part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. GRAIL was built by Lockheed Martin Space Systems in Denver.

Andrews-Hanna’s findings are published online in Nature. For more information about GRAIL, visit nasa.gov/grail and grail.nasa.gov.

The following organizations participated in this research: Colorado School of Mines; University of California, Santa Cruz; Brown University; Southwest Research Institute; Lunar and Planetary Institute; University of Hawaii; Purdue University; NASA Goddard Space Flight Center; Massachusetts Institute of Technology; Carnegie Institution of Washington; and Columbia University.

 

Contact:

Kathleen Morton, Communications Coordinator, Colorado School of Mines / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations, Colorado School of Mines / 303-273-3541 / kgilbert@mines.edu
DC Agle, Jet Propulsion Laboratory, NASA / 818-393-9011 / agle@jpl.nasa.gov
Tim Stephens, Public Information Officer, University of California Santa Cruz / 831-459-4352 / stephens@ucsc.edu   
Kevin Stacey, Physical Sciences News Officer, Brown University / 401-863-3766 / kevin_stacey@brown.edu

Earlier this year, the Mines Campus Safety Committee set a goal to implement emergency evacuation procedures for each of the university’s academic buildings in an effort to ensure consistency in emergency preparedness campuswide.

“The main problems we see are people milling too close to the building, some wandering back in before the all clear is given by the Fire Department and we’ve even had delivery personnel enter buildings during an evacuation,” said Barbara O’Kane, director for Environmental, Health and Safety (EHS).

Students, faculty and staff from Hill Hall volunteered to be a part of a pilot program that included the use of a building evacuation team. Team members were trained to direct people away from the buildings and to a designated assembly area, keep people from re-entering the buildings, communicate updates from the fire department and answer questions from evacuees.

During a practice fire drill in Hill Hall on Aug. 27, the building evacuation team wore red vests and directed evacuees out of the building to the west side of the Green Center. O’Kane attributes the success of the drill to the clear identification on the volunteers’ vests and their ability to give straightforward directions to students and staff.

“The vast majority of evacuees went to the designated assembly area. This is huge because we now have a central gathering point where we can communicate updates to the evacuees, and evacuees can clearly identify evacuation team members.” O’Kane said.

The team developing the new evacuation procedure consists of Metallurgical and Materials Engineering professors John Chandler and Scott Pawelka, Raymond Castillo from fFacilities mManagement, David Cillessen from Public Safety, and Dick Porter and Barbara O’Kane from EHS.

After a successful pilot, the team plans to expand the process to the other academic buildings.

General Evacuation Procedures

1.     Leave class/room/lab

2.     Take belongings if they are close at hand

3.     Encourage others to leave; close doors behind you

4.     Follow exit signs and leave the building at nearest exit

5.     Do not use elevators

6.     Move away from the building and follow building evacuation team member’s directions to designated assembly area

7.     Re-enter the building when prompted by building evacuation team member

8.     Do not interfere with Fire Department; direct questions to building evacuation team member

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / kgilbert@mines.edu

This story appears in the 2014-15 issue of Mines' research magazine, "Energy & the Earth."

For those of us residing on the planet’s surface, the term “shale” evokes visions of flaking layers of rock you can all but peel away by hand. Oil and gas shale is nothing like this. Pick up a cylindrical core brought up from a reservoir two miles below – from the Bakken in North Dakota, the Niobrara in Colorado, the Vaca Muerte in Argentina, it doesn’t matter – and it’s heavy and solid like a hunk of marble. The hydrocarbons are locked inside, perhaps 100,000 times more tightly than would be the case were it merely mixed into concrete.

This is the stuff, though, of the American – and, increasingly, global – boom in unconventional oil and gas. You can’t just drop a well bore into rock like this and watch hydrocarbons gush out. You muse use advanced horizontal drilling and hydraulic fracturing technologies to release the oil and gas. Roughly one-third of the U.S. natural gas production heating our homes and fueling our factories is won this way. Two-thirds of all rigs are drilling horizontal wells. Unconventional energy, at least as applies to shale oil and gas, has become conventional.

Hydraulic fracturing has been around for decades, but we’re still learning about it. What are the true environmental impacts? How can we increase yields to bring more output per well and so have fewer wells, lower costs, cut trade imbalances and lessen the impact on the planet? Can these same techniques be applied to renewable geothermal technologies? Researchers at Colorado School of Mines are working to answer these and other questions via a broad set of disciplines and several noteworthy vehicles. Among them include the Marathon Center of Excellence for Reservoir Studies (MCERS); the new ConocoPhillips Center for a Sustainable We2st (Water-Energy Education, Science and Technology); and a new National Science Foundation (NSF)-sponsored program to understand the risks of natural gas development to the Rocky Mountain Region’s air and water.

As Mines Professor Dag Nummedal, who directs the Colorado Energy Research Institute, put it, “We really focus on making fossil energy more sustainable. That means reducing CO2 emissions, reducing methane emissions, and doing energy development in ways that allow the fossil energy industry to coexist with clean water, agriculture, breathable air and optimal temperatures.”

As part of a five-year, multi-institution NSF project, Mines researchers will focus on quantifying what those risks actually are, said Professor Will Fleckenstein. In the public arena in particular, assertions about the environmental and public health impacts of hydraulic fracturing have not infrequently outstripped their scientific basis, he added.

The projects include a study of the stresses in the cement sheaths and well casings for a better sense of what they can actually handle, he said. Fleckenstein is at the forefront of such work, having invented a technology, now ready for market, that uses a pressure test to ensure a sound hydraulic seal at depths of 300 to 2,000 feet, the zone of freshwater aquifers. The team will also examine databases relating to hydrocarbon migration for a better sense of if, how, and how often it happens.

Elsewhere at Mines, researchers will use a wind tunnel filling what used to be the Volk Gymnasium pool to better grasp how methane from natural gas production migrates through surface soils. Ground and aircraft-based sensors are sometimes finding methane hot spots with no obvious methane sources. That ground-based and air-based sensors tend to disagree on the volume of methane leaking has made the work all the more urgent, said Kathleen Smits an assistant professor. PhD student Ariel Esposito was at work on a small-scale version of the experiment at the pool’s edge. She would feed methane into the bottom of a tank of fine gravel, sand and water and detect it through sensors on top at a rate of 500 samples per second.

“It’s a really important field because there’s a lot of uncertainty about the amount of gas that’s leaking,” Esposito said. “We’re trying to lend some insights into the underlying processes.”

Meanwhile, Mines is applying its renowned strengths in reservoir characterization to boost the production of hydraulically fractured wells, which makes both economic and environmental sense. There’s a big potential upside, said Professor Hossein Kazemi, who co-directs MCERS: current production techniques only yield about 10 percent of unconventional oil, compared to 30 to 40 percent for conventional reservoirs. The work ranges from major field studies of the Bakken, Niobrara and Vaca Muerte led by Professor Steve Sonnenberg to lab experiments focusing on the nanoscale properties of reservoir rock.

As with much of the work at Mines, the research involves both experimentation and computer modeling. In one of Kazemi’s Marquez Hall labs, Mines PhD student Younki Cho has spent two years building a core flooding experiment to measure shale permeability at the nanoscale. The experiment can also inject surfactants or carbon dioxide to simulate enhanced oil recovery, he said. The stainless-steel setup was forcing pressurized brine into a 1.5-inch by 2-inch cylindrical rock core at confining stress of 2,625.7 pounds per square inch (psi) and pressure differential of 2,100 psi, producing a flow of 0.003 cubic centimeter (cc) per minute.

“It’s a very slow rate because permeability is so small,” Cho said. “You have to be very patient.”

Downstairs, PhD student Somayeh Karimi was spinning cores in an ultracentrifuge humming at 13,000 rpm. It was 420 hours into a cycle.

“Right now we have not seen any published data on direct measurement of capillary pressure with reservoir fluids in tight shale rocks,” she said. The results will feed into modeling of how much oil and gas might be recoverable, how fast, and how long that recovery might take, Karimi added.

Over in Professor Marte Gutierrez’s Brown Hall lab, PhD student Luke Frash was fracturing rocks of his own, but larger ones of about a cubic foot. Using a black-steel cell of his own design, Frash applies heat and pressure in three dimensions, and then drills into and hydraulically fractures cubes of shale, high-strength cement and granite, testing for strain, temperature, pressure, sound, even micro-earthquakes. The idea is to understand the rock-mechanical behavior of underground formations, Gutierrez said.

“It’s a scale model of what’s going on in the field,” Gutierrez said.

The granite cubes in Frash’s lab are for studies of hydraulic fracturing for renewable geothermal applications, an active field of study at Mines, said Associate Professor Bill Eustes. He and Fleckenstein are working on a project with the National Renewable Energy Laboratory to see if multi-stage hydraulic fracturing technology used in unconventional shale can be applied to geothermal energy. There are many challenges, Eustes said – among them, thicker geothermal well bores and much more heat.

These and other efforts, including work to characterize possible reservoirs for carbon sequestration and storage, illustrate how the definitions of conventional, unconventional and renewable energy are starting to blur. It’s a fascinating time to be in the energy business, Nummedal said.

“The push for sustainability is driving technology at a faster rate of change than ever before,” he said.

 

 

Pages

Subscribe to RSS - Faculty