Kathleen Smits is a Civil and Environmental Engineering assistant professor at Colorado School of Mines. Smits has been interested in the environment from an early age and her interest for engineering grew as she advanced throughout her college career, but there are some things about Smits that you might not have known.

1. She is currently a member of the U.S. Air Force Reserves

Smits was on active duty in the Air Force for eight years; for three years, she taught at the U.S. Air Force Academy in the Department of Civil and Environmental Engineering.

Currently she is an operations research analyst in the U.S. Air Force Reserves, working part time at U.S. Northern Command at Peterson Air Force Base in Colorado Springs.

“At Mines I study current and emerging environmental problems that are of interest to our nation and the world using both analysis and experimentation. In the Air Force, I do the same thing for different problems and applications. A lot of the understanding and training that I have from being a scientist directly applies to what I do in the military.”

2. She has been scuba diving 150 times

As one of her first jobs out of college, Smits worked with the National Aquarium in Baltimore to help replant eelgrass in the Chesapeake Bay, a job requiring lots of underwater time. 

Since then, Smits has been on several scuba diving trips, mostly in the Caribbean but also in Japan and Hawaii.

Smits also enjoys sailing with her family, starting trips either in Lake Michigan or the Grenadines Islands.

“I love every minute I’m either in or under the water, which is ironic because even though I study water, I focus mostly on water availability in dry, arid regions.”

3. She’s lived all over the place

Smits grew up in Pennsylvania and went to high school in Illinois. She studied Environmental Engineering as an undergraduate student in the U.S. Air Force Academy in Colorado and then studied Civil Engineering–Water Resources at the University of Texas in Austin. While in the Air Force, Smits deployed to a military base in Saudi Arabia for about six months and lived in both Virginia and Colorado.

“When I came to Mines to do my PhD, I realized that I really love teaching but I equally love the research. That’s why I wanted to work and contribute at a university like Mines that has both a research and teaching focus.”

4. She loves running and has a top three list of the most beautiful places to run:

  • Zion National Park, Utah

    Since high school, Smits has been an avid runner. Whenever her family took her to a national park for a vacation, she didn’t hesitate to use it as an excuse to go running.

  • Nakuru, Kenya

    “There are giraffes and chimpanzees all over the roads that I had to dodge to run down the street. If you run in a straight line, you’ll hit a large animal!”

  • Diablerets, Switzerland

    During a research conference in a small, ski town in the Swiss Alps, Smits went for morning runs along a river that runs from the glaciers through the town.

    “Where the path ends, there is a road that passes by all the farms with the sheep and cattle to keep you company. What a beautiful place!”

5. Her favorite hobby is photography

Smits started taking photos regularly seven years ago when her daughter, Elizabeth, was born. Now Elizabeth is immune to her mom taking photos and poses regularly when Smits has her camera around.

Smits also enjoys playing around with Photoshop to make her photos appear different than the original.

“I also water color to get the other side of my brain work.”

Civil and Environmental Engineering professor Kathleen Smits has been teaching at Colorado School of Mines for three and a half years, but began her journey at Mines in 2007, when she was a PhD candidate. Smits currently teaches Hazardous Waste Site Remediation, Fluid Mechanics and Environmental Pollution.

Smits is working with fellow CEE professor Tissa Illangasekare on studying natural gas leakage from oil and gas production into the environment. She is also one of two Mines recipients of the 2015 NSF CAREER Award, in which she aims to advance the science and education of land surface-atmosphere interactions.


Kathleen Morton, Communications Coordinator / 303-273-3088 / KMorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / KGilbert@mines.edu

GOLDEN, Colo., April 22, 2015 – The Colorado School of Mines Office of Special Programs and Continuing Education will host the fourth International School for Materials for Energy and Sustainability July 13-20. 

The weeklong school will present state-of-the-art and future perspectives for materials as they can be applied to energy generation and storage for sustainable energy technologies.

Eleven students are part of a humanitarian engineering course that is designing plans to relocate a village displaced by mining operations in the Democratic Republic of the Congo in Africa. The course “Projects for People,” taught by corporate social responsibility and Human Centered Design professor Benjamin Teschner, is geared toward students interested in the social challenges associated with the extractive industries and how engineering helps address these problems.

During the first class, Teschner gave each student $20 to design a prototype that would act as a tool to explain to someone living in the village how their lives would change after relocating.

“Commonly, students think of prototypes only as something they build to test their idea or to help themselves as engineers refine a design. What this assignment does is force them to think about how to design a prototype that will show someone else how their idea works so they can engage non-engineers in their design process,” Teschner said. “Students will immediately lay their assumptions about the problem out on the table for everyone to see—assumptions that they didn’t even know they were making.”

Aina Abiina is one of two graduate students in the class. The course is not required for Abiina’s Liberal Arts and International Studies degree, however she chose to enroll because she wanted to learn about the interaction between multi-national companies and people that are affected by these companies’ activities.

“In order to minimize a negative impact on the environment of those people and to optimize the production of the mine, a proper assessment is needed,” said Abiina. “Designing solutions to this complex engineering and social challenge will help students gain valuable skills in human-centered design methods, research techniques, brainstorming tools and approaches.”

Over the next few months, teams in two groups will have three phase gate reviews that will explore problem definition, design exploration and design analysis. The unique thing about this course is that the grades and passage of the phase gates are not linked. Grades are determined instead by how the team works within these phase gates.

“I hope students are able to develop empathy for people who use the things they design and that they recognize by bringing these people into the design process, they can create better, more sustainable engineering outcomes,” Teschner said.

Chemical and Biochemical Engineering student Karyn Burry hopes to end the course with better design flow skills.

“I am a super organized person and that usually is really helpful in a group, but this class is pushing me out of the organizer position into a position where I am forced to think outside the box in attempt to find a solution to this relocation project,” Burry said.

To better understand the village and relocation process, students are working with Thabani Mlilo, manager of sustainability for the America region at AngloGold Ashanti, who is acting as the ‘client’ on the project. Mlilo’s goal is to catalyze a paradigm shift early enough in an engineer’s education so that it is “part of their DNA” and a natural part of how they approach problems or solutions wherever there is a sustainability aspect to their work.

“In the sustainability field, one of the biggest challenges we have is shifting the paradigm of professionals in technical and scientific disciplines to the changing landscape of the business-society interface,” Mlilo said. “My impression of Mines students is that they don’t shy away from a challenge and are not afraid of treading unknown waters.”

For questions about the course, please contact Benjamin Teschner at bteschne@mines.edu.



Kathleen Morton, Communications Coordinator / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / kgilbert@mines.edu

We spend 90 percent of our time indoors (according to the EPA) without realizing that the air we breathe could be potentially dangerous to our long-term health. Civil and Environmental Engineering professor Tissa Illangasekare has spent the last five years researching how volatile organic compounds, which are commonly entrapped as non-aqueous phase liquids (NAPLs) or dissolved into groundwater to produce plumes, affect our indoor air concentration.

“We drink so many liters of water a day, but we inhale so many thousands of liters of air,” Illangasekare said. (According to the EPA, the average American inhales close to 3,000 gallons a day.) “Sometimes we go to a contaminated site, test the water and we find it’s clean but later we go inside the building and find the vapor is contaminated.”

In 2009, Illangasekare and his research group, including a collaborator from the U.S. Air Force Academy, received funding from the Department of Defense Strategic Environmental Research and Development Program Office. The funding allowed the researchers to improve their understanding of the processes and mechanisms controlling vapor generation from entrapped NAPL sources and groundwater plumes, their subsequent migration through the subsurface, and their attenuation in naturally heterogeneous vadose zones under various natural physical, climatic, and geochemical conditions.

As the director of the Center for Experimental Study of Subsurface Environmental Processes, Illangasekare has an advantage. In his lab, he works with students to control experiments in multiscale test systems, studying vapor and airflow through unsaturated soils. The tanks are instrumented with soil moisture, relative humidity and temperature sensors. Using computation models, Illangasekare can predict how various climates affect soil concentrations expected to be found in a building. 

Their hypothesis was that some of this variability could originate from weather and hydrologic cycle dynamics, such as surface heating, rainfall and water table fluctuation.

“We learned how contaminant vapors move preferentially through the ground and make their way into people’s basements or crawl spaces,” said Kathleen Smits, a professor in the Department of Civil and Environmental Engineering, who has worked with Illangasekare for the past five years. “We also discovered how this is influenced by changes in climate (e.g. temperature, wind conditions and precipitation).”

In April 2014, Illangasekare received the 2012 European Geosciences Union's Henry Darcy Medal for his scientific contributions in water resources research and water resources engineering and management. Two months later, he was one of the coauthors on a report to the Strategic Environmental Research and Development Program on “Vapor Intrusion From Entrapped NAPL Sources and Groundwater Plumes: Process Understanding and Improved Modeling Tools for Pathway Assessment.”

“Our research has contributed to fundamentally understanding what’s happening to this system, which will help decision makers and regulatory agencies give better guidelines on how to manage these sites,” he said.

Illangasekare’s research will impact closure decisions on waste sites based on vapor intrusion risks.

“There’s a need for this science to exist. We are training a new generation of scientists and engineers to look at these kinds of problems.”



Kathleen Morton, Communications Coordinator / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / kgilbert@mines.edu

Metallurgical and Materials Engineering doctoral student Joseph Grogan has developed an environmental friendly dezincing process that recycles the galvanized steel in its entirety. While the steel component of galvanized steel is mostly recycled nowadays, the zinc component is often not. This technology produces a zinc sulfate that could be marketed as fertilizer and the remaining steel used as an alternative feed material to a foundry.

Due to issues including health and safety concerns at facilities that would recycle this type of steel, Grogan has created a simple hydrometallurgical (water based process) method with lower costs for removing the zinc coating on galvanized steel scrap.

“For reasons including environmental stewardship and sustainability, the reuse of metals in society is a good thing,” Grogan said. “This de-zincing process has zero waste discharge – minimizing environmental impact while completely recycling the zinc and steel.”

Galvanized steel has a lower market price compared to regular scrap metal, but is problematic to recycle as zinc vaporizes at lower temperatures than iron. Facilities that recycle this type of steel require gas and dust collection systems to capture the zinc. The dust can be recycled at a significant cost, but it is often landfilled, dependent on the jurisdiction.

“As commodity prices rise with increased demand and mine supply constraints, resources from recycling are frequently a more viable and significant supply for many metals,” Grogan said. “These increasingly complex recycling streams will require a host of new processes to recycle them economically. Extractive metallurgy is a field which specializes in developing the techniques and technologies needed to recycle these complex materials.”

Grogan’s research was supported through the Center for Resource Recovery and Recycling, of which Colorado School of Mines is an academic partner.

In the fall, Grogan was the recipient of the 2014 National Scholarship from the Recycling Research Foundation for his research supporting scrap processing and the recycling industry.

Grogan began this research in 2011, along with Department of Metallurgical and Materials Engineering professors Corby Anderson and Gerard Martins. He is studying at the Kroll Institute for Extractive Metallurgy at Mines and will earn his doctorate degree in May.



Kathleen Morton, Communications Coordinator / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / kgilbert@mines.edu

The College of Engineering and Computational Sciences Senior Design Trade Fair is an opportunity for Colorado School of Mines students to showcase projects that they have been working on with a client during the past two semesters. Nine teams presented their work, while judges consisting of faculty and alumni graded them on their ability to define, analyze and address a design problem and to present their work through display and dialogue.

Trade Fair Results

  • 1st Place: CSM FlightLab
    • Client: Mounir Zok, Faculty Advisor: Joel Bach, Consultant: Sam Strickling
    • Team Members: Michael Blaise, Adam Casanova, Andrew Eberle, Ryan Elliott, Kelli Kravetz and Perry Taga
  • 2nd Place: JB Engineering
    • Client: Edge of Seven, Faculty Advisor: Judy Wang, Consultants: Joe Crocker and Juan Lucena
    • Team Members: Matthew Craighead, Steven Johnson, Ali Khavari, Brian Klatt and Jasmine Solis
  • 3rd Place: AutoBots
    • Client: Jered Dean, Faculty Advisor: Judy Wang, Consultant: Jenifer Blacklock
    • Team Members: Arveen Amiri, Dorian Illing, Adriana Johnson, Keeranat Kolatat and Jennifer McClellan
  • 4th Place: SolTrak
    • Client: iDE, Faculty Advisor: Judy Wang, Consultant: David Frossard
    • Team Members: Miranda Barron, Lincoln Engelhard, Oluwaseun Ogunmodede, Brenda, Ramirez Rubio, Eric Rosing and Kevin Wagner

Broader Impacts Essay Results

  • 1st Place: Jace Warren for "The World Cup, It's Not Rocket Science"
  • 2nd Place: Aaron Heldmyer for "The Modern Renaissance Men and Women"
  • 3rd Place: Jennifer McClellan for "Engineering Modern Vehicles for First Responders"

Winning teams will receive plaques at the post-graduation banquet in December.

You be the judge. Listen to two teams present their projects at the Senior Design Trade Fair.

Senior Design Project: SolTrak

Senior Design Project: CSM Outreach Engineering

View more information about the Senior Design Program.



Kathleen Morton, Communications Coordinator, Colorado School of Mines / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations, Colorado School of Mines / 303-273-3541 / kgilbert@mines.edu

The Colorado School of Mines Colorado Fuel Cell Center hosted the first public demonstration of IEP Technology’s Geothermic Fuel Cell™ (GFC) Oct. 23. This first-ever GFC will enable production of unconventional hydrocarbons, such as oil shale, in an economic and environmentally sustainable way, while producing clean, baseload electricity.

The technology was developed in collaboration with Pacific Northwest National Laboratory/U.S. Department of Energy, TOTAL Petroleum, Delphi Automotive PLC (NYSE: DLPH), and the Colorado Fuel Cell Center at Colorado School of Mines.

“In the Piceance Basin (Northwest Colorado) alone, Colorado’s oil shale reserves are estimated in the trillions of barrels, but there has not been an environmentally responsible or economically viable way to access them,” said Alan Forbes, President and CEO of IEP Technology. “We are now one step closer to recovering oil shale resources while producing clean, reliable energy that will have significant economic impact for Colorado.”

Capital and operating costs of GFC technology are dramatically lower than other technologies when including revenues from surplus power and gases generated in the process. Previous technologies have either used mining/surface production facilities or large amounts of traditional utility-supplied electricity for in-situ technologies, both of which have significant impacts to the environment.

The GFC technology will capture and reuse its own gases produced in the process to become self fueling after startup; can achieve net zero air emissions; and can actually produce water during its operation thus avoiding impact to water needs in arid parts of the state.

IEP Technology’s GFCs use proven and tested solid oxide fuel cell (SOFC) technology from Delphi. GFCs use the heat generated by the fuel cells as the “product,” leaving the clean baseload energy from the fuel cells available to be sold back into the utility grid.

 “We are really excited to apply our knowledge and expertise in fuel cells and oil shale to an innovative industry application like the GFCs,” said Dr. Neal Sullivan, the Colorado School of Mines professor who is also the school’s Director of the Colorado Fuel Cell Center Laboratory.

IEP Technology’s plan is to complete in-situ testing this year to monitor the heat and electrical output of the GFCs. A full-scale GFC field test at a Northwest Colorado oil shale resources site is slated for 2015. Commercialization is expected to follow application validation.


About IEP Technology
Independent Energy Partners (IEP) is a clean technology and resource company based in Denver, Colorado focused on the economic and environmentally responsible recovery of unconventional hydrocarbon resources utilizing its patented, breakthrough in-situ Geothermic Fuel Cell(GFC) system. IEP was founded in 1991 and has been involved in the development of more than 15 energy projects employing a wide range of technologies. The company holds exclusive rights to broad, patented GFC processes and technology in the U.S. and Canada as well as its own oil shale resources containing more than 2.0 billion barrels of oil. Patenting and technological development has been underway since 2004 and has been vetted by the US Department of Energy’s Pacific Northwest National Laboratory.  IEP holds strategic partnerships with Total Petroleum, Uintah Resources, Inc., Delphi Corporation and Colorado School of Mines. Learn more about the company and its technology at iepm.com.

About the Colorado Fuel Cell Center at Colorado School of Mines
Colorado School of Mines, mines.edu, is a uniquely focused public research university dedicated to preparing exceptional students to solve today’s most pressing energy and environmental challenges. Founded in 1874, the institution was established to serve the needs of the local mining industry. Today, Mines has an international reputation for excellence in engineering education and the applied sciences with special expertise in the development and stewardship of the earth’s resources.

About Delphi

Delphi Automotive PLC (NYSE: DLPH) is a leading global supplier of technologies for the automotive and commercial vehicle markets.  Headquartered in Gillingham, England, Delphi operates major technical centers, manufacturing sites and customer support services in 32 countries, with regional headquarters in Bascharage, Luxembourg; Sao Paulo, Brazil; Shanghai, China and Troy, Michigan, U.S. Delphi delivers innovation for the real world with technologies that make cars and trucks safer as well as more powerful, efficient and connected. Visit delphi.com.


Kathleen Morton, Communications Coordinator, Colorado School of Mines / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations, Colorado School of Mines / 303-273-3541 / kgilbert@mines.edu
Cindy Jennings, President, Volition Strategies / cindy@volitionstrategies.com

Graduate students Travis Brown (Hydrology) and Kamran Bakhsh (Mining Engineering) received first place as the winning team in the 2014 Geothermal Case Study Challenge, sponsored by the Energy Department’s Office of Energy Efficiency and Renewable Energy. Last semester, Brown and Bakhsh worked with Mining Engineering Professor Masami Nakagawa to gather geothermal data on the Waunita Hot Springs Geothermal Area in Gunnison, Colorado. They published their case studies on OpenEi.org, a Wiki for energy information.

“Waunita has some of the higher geothermal potential in the state and right now there are not any geothermal power plants in Colorado,” Brown said. “Part of our interest in doing this site was to complie research that may be 2-3 decades out of date and hope enough people would be interested to conduct more recent exploration there.” As part of the award, Brown was able to attend the Geothermal Resource Council's 38th Annual Meeting, the largest geothermal conference in North America.

Both students learned how to organize research on an open source domain website and to apply exploration techniques to finding geothermal resources.

Their data collection can be found at OpenEi.



Kathleen Morton, Communications Coordinator, Colorado School of Mines / 303-273-3088 / kmorton@mines.edu
Karen Gilbert, Director of Public Relations, Colorado School of Mines / 303-273-3541 / kgilbert@mines.edu

This story appears in the 2014-15 issue of Mines' research magazine, "Energy & the Earth."


Water and oil don’t mix. With oil and gas production and water, it’s quite the opposite.

Getting at the unconventional oil and gas reserves at the heart of America’s energy boom can take millions of gallons of water per well before the first hydrocarbons emerge.[1] One estimate puts the hydrologic demands of the 80,000 wells in 17 states drilled since 2005 at more than 250 billion gallons.[2] That’s three times the volume of Denver Water’s Dillon Reservoir.

Yet in the western United States and elsewhere, geologic “accident” has placed some of the most promising unconventional oil and gas reserves below parched landscapes.

Mines researchers are at the forefront of enhancing our still-nascent understanding of this modern story of oil and water, and more broadly in the development of new ways to boost freshwater resources in an era of rising demand and growing scarcity.

ConocoPhillips’ recent $3 million gift to establish the new Center for a Sustainable WE2ST (Water-Energy Education, Science and Technology) is the latest testament to Mines’ strengths in water.

The idea is to focus on a single formation such as the Niobrara, taking a comprehensive look at the complex technical and social interdependencies of oil and gas development and limited water resources. Professor John McCray, head of Mines’ Civil and Environmental Engineering Department, describes a wide-ranging effort, involving remote sensing and hydrological models to map out water sources and the tools of geochemistry, hydrology, microbiology and environmental engineering to develop ways to clean up the water that emerges from the depths during oil and gas operations. The work also will involve a strong social-sciences component led by Mines anthropologist Professor Jessica Rolston, McCray said, to help define ways to communicate the actual risks of unconventional energy development and get energy companies, regulators and the public on the same factual page.

“It’s a partnership with ConocoPhillips that can break new ground, and one that doesn’t exist outside of this center,” McCray said. “We want to come out and be the honest broker.”

Education is a key component of the ConocoPhillips center, said Associate Professor Terri Hogue, who is directing the new center. A big part of the budget will go to fellowships for 15 to 20 masters and PhD students, she said, in addition to 10 undergraduate fellowships each year. The center will attract top-notch talent all focusing on the nexus of water resources and energy development.

Professor Tzahi Cath is among those at Mines already at work at that confluence. Cath directs Mines’ Advanced Water Technology Center (AQWATEC), which is developing a range of water-treatment technologies. This spring, the masters students in Cath’s Environmental Engineering Pilot Lab course were studying if adding an inky slurry of activated charcoal to the city of Golden’s water treatment process might help remove the organics that have spiked in reservoirs along Colorado’s Front Range after the 2013 flood. A green garden hose snaked from a tank in the bed of the AQWATEC pickup parked on the sidewalk outside Coolbaugh Hall. It fed a bench-scale model of Golden’s water treatment plant, its upper tanks full of fluid like curdling apple cider. If it worked here, they would test the activated charcoal in a Mines pilot plant housed in the treatment facility itself and, assuming the city adopts the approach, would help with the transition to the full-scale plant.

“Usually, the city adopts our recommendations,” Cath said.

A bit downhill, in AQWATEC’s space in Mines’ General Research Laboratory, PhD student Bryan Coday was working near several hip-high plastic drums, some encrusted with salt (they’re for a project testing new ways to extract valuable potassium sulfate from the Great Salt Lake).

Others contained produced water from hydraulic fracturing operations, and Coday was working on a system to cleanse it using low-pressure osmosis and flat-sheet polymeric membranes. To the touch, the membranes felt like high-end wrapping paper, but in practice is a very sophisticated material. The system uses salt water to attract clean water from the deep-brown produced water across the membrane, which retains contaminants.

“Produced water is difficult to treat because of the hydrocarbons and complex organic compounds, plus high salinity,” Cath said. Mines environmental chemist Professor Christopher Higgins is working with Cath to identify just what chemicals from the different samples of produced water cross the membranes, and how they can improve the process to produce even drinking-quality water from produced water.

A test system had performed well enough that Coday and research assistant Mike Veres were now in the midst of building a pilot-scale system. “Harnessing the natural chemical energy of brine as the driving force for wastewater treatment has its advantages,” Cath said. “Such systems are mechanically simpler, take less energy, and are easier to clean because the grime hasn’t been rammed into filter pores as happens with high-pressure systems.”

If some combination of low-pressure filtration and microbial treatment (another AQWATEC project being tested across the lab in columns of activated carbon next to the AQWATEC aluminum boat) can economically bring produced water to the high standards of municipal wastewater treatment, the benefits are hard to miss. Water locked up two miles below could be released into streams in drought-prone regions, actually boosting the water budget. And oil and gas operations could reuse some portion of this new resource in their hydraulic fracturing operations. Coday is enthusiastic.

 “It’s a great opportunity to work on a project where industry is moving at such a quick pace on the energy side, on the water side and on the regulatory side,” he said.

Another major project has a similarly sweeping purview, but pertains to urban water use. Since 2011, Mines has teamed with Stanford University, the University of California at Berkeley and New Mexico State University on a 10-year, $40 million effort that aims to transform how cities in the arid West use and reuse water. The program, called Re-Inventing the Nation’s Urban Water Infrastructure (ReNUWIt), is the first National Science Foundation-funded Engineering Research Center to focus on water issues.

McCray, who leads the Mines effort, said a dozen Mines faculty are leading or working on some 20 ReNUWIt projects. Hogue is spearheading an effort involving several Mines colleagues to determine the potential impact of August 2013’s 257,000-acre Sierra Nevada Rim Fire on water supplies to San Francisco and surrounding counties. Cath’s team is refining a portable, commercial-scale sequence batch membrane bioreactor that has proven its mettle with the wastewater from the apartments at Mines Park – capable of producing drinking water from domestic wastewater. Mines professors Tissa Illangasekare and Kate Smits lead a project that is developing technology to allow underground aquifers to treat and store water and then re-use it rather than letting it escape downstream. They are researching the use of sensors that provide real-time feedback on system performance, so decisions can be made to improve operation efficiency. Mines Associate Professor Linda Figueroa is working with the Plum Creek Wastewater Authority south of Denver on a pilot-scale system using anaerobic wastewater treatment. The system has been in operation for 1.5 years and has reduced more than 40 percent of the influent organic matter without the expense of oxygen (unlike traditional aerobic methods) and, as a bonus, produces energy while it cleans wastewater.

As with the ConocoPhillips center, ReNUWIt involves a heavy social science component. That’s because, for all the technological capabilities on display at Mines, the biggest challenges facing smarter water systems may reside between our ears. People just don’t like the idea of drinking reclaimed water (in Singapore they call it NeWater), McCray said, even though that’s what the South Platte River really is. Collectively, such apprehensions coalesce into powerful social and political barriers.

 “They’re by far the biggest hurdles to clear if we’re going to have any change in the way we develop our infrastructure,” McCray said.


This story appears in the 2014-15 issue of Mines' research magazine, "Energy & the Earth."

For those of us residing on the planet’s surface, the term “shale” evokes visions of flaking layers of rock you can all but peel away by hand. Oil and gas shale is nothing like this. Pick up a cylindrical core brought up from a reservoir two miles below – from the Bakken in North Dakota, the Niobrara in Colorado, the Vaca Muerte in Argentina, it doesn’t matter – and it’s heavy and solid like a hunk of marble. The hydrocarbons are locked inside, perhaps 100,000 times more tightly than would be the case were it merely mixed into concrete.

This is the stuff, though, of the American – and, increasingly, global – boom in unconventional oil and gas. You can’t just drop a well bore into rock like this and watch hydrocarbons gush out. You muse use advanced horizontal drilling and hydraulic fracturing technologies to release the oil and gas. Roughly one-third of the U.S. natural gas production heating our homes and fueling our factories is won this way. Two-thirds of all rigs are drilling horizontal wells. Unconventional energy, at least as applies to shale oil and gas, has become conventional.

Hydraulic fracturing has been around for decades, but we’re still learning about it. What are the true environmental impacts? How can we increase yields to bring more output per well and so have fewer wells, lower costs, cut trade imbalances and lessen the impact on the planet? Can these same techniques be applied to renewable geothermal technologies? Researchers at Colorado School of Mines are working to answer these and other questions via a broad set of disciplines and several noteworthy vehicles. Among them include the Marathon Center of Excellence for Reservoir Studies (MCERS); the new ConocoPhillips Center for a Sustainable We2st (Water-Energy Education, Science and Technology); and a new National Science Foundation (NSF)-sponsored program to understand the risks of natural gas development to the Rocky Mountain Region’s air and water.

As Mines Professor Dag Nummedal, who directs the Colorado Energy Research Institute, put it, “We really focus on making fossil energy more sustainable. That means reducing CO2 emissions, reducing methane emissions, and doing energy development in ways that allow the fossil energy industry to coexist with clean water, agriculture, breathable air and optimal temperatures.”

As part of a five-year, multi-institution NSF project, Mines researchers will focus on quantifying what those risks actually are, said Professor Will Fleckenstein. In the public arena in particular, assertions about the environmental and public health impacts of hydraulic fracturing have not infrequently outstripped their scientific basis, he added.

The projects include a study of the stresses in the cement sheaths and well casings for a better sense of what they can actually handle, he said. Fleckenstein is at the forefront of such work, having invented a technology, now ready for market, that uses a pressure test to ensure a sound hydraulic seal at depths of 300 to 2,000 feet, the zone of freshwater aquifers. The team will also examine databases relating to hydrocarbon migration for a better sense of if, how, and how often it happens.

Elsewhere at Mines, researchers will use a wind tunnel filling what used to be the Volk Gymnasium pool to better grasp how methane from natural gas production migrates through surface soils. Ground and aircraft-based sensors are sometimes finding methane hot spots with no obvious methane sources. That ground-based and air-based sensors tend to disagree on the volume of methane leaking has made the work all the more urgent, said Kathleen Smits an assistant professor. PhD student Ariel Esposito was at work on a small-scale version of the experiment at the pool’s edge. She would feed methane into the bottom of a tank of fine gravel, sand and water and detect it through sensors on top at a rate of 500 samples per second.

“It’s a really important field because there’s a lot of uncertainty about the amount of gas that’s leaking,” Esposito said. “We’re trying to lend some insights into the underlying processes.”

Meanwhile, Mines is applying its renowned strengths in reservoir characterization to boost the production of hydraulically fractured wells, which makes both economic and environmental sense. There’s a big potential upside, said Professor Hossein Kazemi, who co-directs MCERS: current production techniques only yield about 10 percent of unconventional oil, compared to 30 to 40 percent for conventional reservoirs. The work ranges from major field studies of the Bakken, Niobrara and Vaca Muerte led by Professor Steve Sonnenberg to lab experiments focusing on the nanoscale properties of reservoir rock.

As with much of the work at Mines, the research involves both experimentation and computer modeling. In one of Kazemi’s Marquez Hall labs, Mines PhD student Younki Cho has spent two years building a core flooding experiment to measure shale permeability at the nanoscale. The experiment can also inject surfactants or carbon dioxide to simulate enhanced oil recovery, he said. The stainless-steel setup was forcing pressurized brine into a 1.5-inch by 2-inch cylindrical rock core at confining stress of 2,625.7 pounds per square inch (psi) and pressure differential of 2,100 psi, producing a flow of 0.003 cubic centimeter (cc) per minute.

“It’s a very slow rate because permeability is so small,” Cho said. “You have to be very patient.”

Downstairs, PhD student Somayeh Karimi was spinning cores in an ultracentrifuge humming at 13,000 rpm. It was 420 hours into a cycle.

“Right now we have not seen any published data on direct measurement of capillary pressure with reservoir fluids in tight shale rocks,” she said. The results will feed into modeling of how much oil and gas might be recoverable, how fast, and how long that recovery might take, Karimi added.

Over in Professor Marte Gutierrez’s Brown Hall lab, PhD student Luke Frash was fracturing rocks of his own, but larger ones of about a cubic foot. Using a black-steel cell of his own design, Frash applies heat and pressure in three dimensions, and then drills into and hydraulically fractures cubes of shale, high-strength cement and granite, testing for strain, temperature, pressure, sound, even micro-earthquakes. The idea is to understand the rock-mechanical behavior of underground formations, Gutierrez said.

“It’s a scale model of what’s going on in the field,” Gutierrez said.

The granite cubes in Frash’s lab are for studies of hydraulic fracturing for renewable geothermal applications, an active field of study at Mines, said Associate Professor Bill Eustes. He and Fleckenstein are working on a project with the National Renewable Energy Laboratory to see if multi-stage hydraulic fracturing technology used in unconventional shale can be applied to geothermal energy. There are many challenges, Eustes said – among them, thicker geothermal well bores and much more heat.

These and other efforts, including work to characterize possible reservoirs for carbon sequestration and storage, illustrate how the definitions of conventional, unconventional and renewable energy are starting to blur. It’s a fascinating time to be in the energy business, Nummedal said.

“The push for sustainability is driving technology at a faster rate of change than ever before,” he said.




Subscribe to RSS - Environment