Sustainability

Colorado School of Mines has received a $7.5 million, five-year grant from the U.S. Department of Transportation to establish a University Transportation Center (UTC), focused on improving the durability and lifespan of underground transportation.

James R. Paden Distinguished Professor Marte Gutierrez from the Department of Civil and Environmental Engineering is the lead on this interdisciplinary project that draws on the expertise and reputation of Mines’ Center for Underground Construction and Tunneling (UC&T).

“This is such a huge win for Mines,” said Professor Mike Mooney, the Bruce Grewcock University Chair and Director of UC&T. “This is the first U.S. DOT funded center at Mines and the first ever U.S. DOT center focused on underground infrastructure. This effort will build upon the strong foundation of UC&T at Mines and cements UC&T and Mines as the number one place in the world for underground construction and tunneling research and education.”   

In collaboration with affiliate partners, California State University, Los Angeles and Lehigh University, the new center includes research, education and outreach to make underground construction and transportation safer, more sustainable and more cost-efficient.

“We are running out of land, especially in urban areas. The only way to meet increased demand for transportation is to go underground,” explained Gutierrez. “Underground transportation and infrastructure is key to reducing congestion and pollution.”

UC&T graduate students explore an underground construction site.

The center hopes to work closely with industry leaders to develop advanced technologies that would avoid the problems that often extend the time and cost of underground construction. “Our goal is to help the construction industry,” said Gutierrez, “by providing tools, methodologies and technology for underground construction. We want to partner with the industry so that we can apply our findings, as well as offer continuing education courses—that’s how technology transfer really happens.”

Mines’ UC&T, started in 2011 with generous initial support from Mines alumnus Bruce Grewcock, has been leading efforts toward a more adaptive design system in the field of underground construction and tunneling. Boreholes and geological/geophysical surveys provide limited information on ground conditions until excavation starts. Predicted responses often differ from the reality once a project is underway. Gutierrez is proposing the use of adaptive computational modeling to align design with the site-specific geology. 

“We want to exploit the new knowledge we gain every time we excavate,” said Gutierrez. “The design must adapt. As we improve our understanding of the site’s geology, the design also improves, ultimately avoiding the unexpected high costs and extended timelines that can occur when the natural and built environments do not match.”

The center will also look at extending the life of existing aging infrastructures and how transportation infrastructure can best be repaired with the least impact on congestion. Ultimately, with cooperation from industry, the UTC at Mines will lead to increased safety, reliability and sustainability in underground transportation infrastructures.

“Marte has done such a fantastic job leading the successful proposal effort and now leading a great cross-campus interdisciplinary team,” said Mooney, referencing the diverse expertise of the faculty members who are involved in the project: professors Hugh Miller, Jurgen Brune, Rennie Kaunda and Department Head Priscilla Nelson from Mining Engineering; Andrei Swidinsky from Geophysics; as well as the Co-PIs: Gabriel Walton and Wendy Zhou from Geology, Eunhye Kim from Mining, and Reza Hedayat, Panos Kiousis, and Shiling Pei from Civil and Environmental Engineering—in addition to Mooney and Gutierrez.

Mooney added, “The Mines community of current students and alumni out there shaping the future of underground infrastructure should all be very proud.”   

 

CONTACT:

Deirdre Keating, Communications Manager, College of Engineering & Computational Sciences | 303-384-2358 | dkeating@mines.edu
Ashley Spurgeon, Editorial Assistant, Mines magazine | 303-273-3959 | aspurgeon@mines.edu

 
Students from Alameda International Junior/Senior High School visited Colorado School of Mines on December 7 as part of an outreach program aimed at connecting high schools with a diverse student body to Mines—with a focus on earth science. The program, Mining for Talent, was initiated by the Integrated Groundwater Modeling Center (IGWMC) in conjunction with Jefferson County Public Schools and funded by the National Science Foundation. 
 
Professor of Hydrology Kamini Singha, graduate students from the Hydrologic Science and Engineering Program and staff from the IGWMC led the group throughout the day, which included hands-on lab activities, interactive demos, a scavenger hunt in the Geology Museum and more.
 
“I really want to provide opportunities for some of our local high schools with students underrepresented in earth science to see what we all do here,” said Singha. “These kids are bright and motivated, and starting to think about college. Mines might be the kind of place some of them would consider, especially when they see all we can do here.”
 
The students participated in a number of lab activities—from generating earthquakes using smartphones and mapping contamination in the subsurface to exploring the role of biology on geochemical reactions. With each activity, they toured a related campus facility, such as the Earth Mechanics Institute and the Center for Experimental Study of Subsurface Processes, exposing them to the daily activities of these centers.
 
Twelve graduate students from HSE participated in the outreach program. “I’m glad Mines is reaching out to local high schools”, said Annette Hein, who led a campus tour. “I hope we can help these students get excited about science and engineering.”
 
The interactive day ended with an info session aimed at helping the students focus on what they can do in their last years in high school to help them get into the college of their choice.
 
Travis Ramos, a new graduate student in HSE who just earned his bachelor's from Mines, led a presentation on what a day in the life of a college student looks like. “College is truly a time to empower yourself to make an impact in the world,” said Ramos. “I wanted most of all for them to know that college will help them explore their interests, discover their passions and provide a platform for them to excel in life.”
 
This program will be funded through NSF for another year, and Singha and the IGWMC are looking into other opportunities to engage diverse students on campus. 
 
See more photos from the day here.
 
Contact:
Agata Bogucka, Communications Manager, College of Earth Resource Sciences & Engineering | 303-384-2657 | abogucka@mines.edu
Mark Ramirez, Communications Manager, College of Applied Science & Engineering | 303-384-2622 | ramirez@mines.edu

 

 

Seven students from the winning senior design team, Pig Patrol. Mechanical Engineering

Pig Patrol, a team of seven mechanical engineering seniors at Colorado School of Mines, received first place in the College of Engineering and Computational Sciences Fall Senior Design Trade Fair on December 1, 2016. They designed an integrated cleaning and inspection pig (ICIP) that can collect data more frequently and affordably, without interrupting the pipeline flow.

“Pigging” is a common term in pipeline management, referring to devices known as “pigs” that perform maintenance operations. The name originally referred to the squealing noise the early devices made while traveling in the pipe.

“Basically we need to find defects along the inside of oil pipelines so that pipes don’t rupture,” explained team member Kyle Crews. “We designed a robot that can travel along the inside of the pipeline, find the defects and report them back using a unique sensor that could have a big impact on this market. Our design allows for more frequent testing in a cost-effective way.”

The team is working to possibly take to market the sensor technology that they adapted in the design of their pig. The team’s design acquires lower quality data but in a higher quantity that would allow companies to run the ICIP every time the pipeline is cleaned, rather than every couple of years.

“We have a really close-knit team,” said Crews, “and want to take this forward after graduation, even though several of us are moving out of state. We’ve had a lot of great feedback from people in the industry. We also want to thank our client, Craig Champlin, and our faculty advisor, Jered Dean, who really guided us along over the past two semesters.”

The +4 Designs team received second place for their design of an adjustable down-hole probe-centralizer to be used in geophysical testing by their client, Mount Sopris Instruments. The third place team, Dynamic Hydration Systems, created a hydration system intended for endurance auto racing drivers. They built and tested a system that delivers hydration to the driver without detracting from the driver’s focus through a refillable and detachable component.

Other projects included two for the National Renewable Energy Laboratory, one developing an online method for measuring the residence time distribution for a biofuel pre-treatment reactor and the other an instrumentation system to determine the physical level and density of process material inside a thermochemical hydrolysis reactor.

Several teams presented projects aimed at improving Mines’ campus, such as an electrical system aimed at allowing the Starzer Welcome Center to function for 48 hours during an interruption of service and another that looked at better stormwater management through the use of green infrastructure.

For the second time, a Mines senior design team constructed a hands-on educational device for the Boulder Journey School. The human-powered water system is designed to introduce children to cause-and-effect relationships via the use of gears, pulleys and other mechanical devices.

Mines Formula Society of Automotive Engineers also presented an aerodynamic design for the car they will use in their 2017 competition in Nebraska. Students from Mines Human Centered Design Studio presented early prototypes of their adaptive equipment designs, even though they will be competing in the spring trade fair. 

More information about all the teams can be found on the Capstone site. Photos from the event are available on Flickr and via the slideshow below.

2016 Fall Capstone Trade Fair

 

Trade Fair Winners

1st Place – Pig Patrol – Integrated Cleaning and Inspection Pipeline Pigging Robot

Students: Logan Nichols, Evan Marshall, Grant DeShazer, Evan Thomas, Matthew Atherton, Victoria Steffens, Kyle Crews

Client: Craig Champlin

Adivsor: Jered Dean

Consultant: John Steele
 

2nd Place – +4 Designs – Adjustable Downhole Centralizer

Students: Steven Blickley, Nick Markel, Jenevieve Parker, Steven Staszak

Clients: Mount Sopris Instruments: Curtis Baker, Jody DuMond

Advisor: Buddy Haun

Consultants: Jered Dean

 

3rd Place – Dynamic Hydration Systems - Endurance Auto Racing Hydration System Challenge

Students: Will Bennett, Matt Craig, Jaime DuBois, Kaan Korkmaz, Allen Jackson, Ry Walter

Client: Scott Durham

Advisor: Robin Steele

Consultants: Robert Amaro

 

Broader Impacts Essay Winners

1st Place - “Are Electric Vehicles More Brown than Green?” by Kelly Dempsey

2nd Place – “Learning to Drive” by Ben Koehler

3rd Place – “The Broader Impacts of Design Choices in the Airline Industry” by Connor Groeneweg

 

CONTACT:

Deirdre Keating, Communications Manager, College of Engineering & Computational Sciences | 303-384-2358 | dkeating@mines.edu
Ashley Spurgeon, Editorial Assistant, Mines magazine | 303-273-3959 | aspurgeon@mines.edu

 

A full room of people watching a powerpoint presentation about mine remediation
Mines held a summit on expectations for the closure of historic and abandoned mines on Nov. 17, 2016.

Colorado School of Mines recently hosted a summit on reasonable expectations for the closure of historic and abandoned mines. The summit was held on November 17, 2016, and brought together non-governmental organizations, members of industry, local community members and other stakeholders from throughout the world to discuss what it takes to have a successful mine closure and generate expectations for future stakeholders.

The Payne Institute for Earth Resources sponsored the summit, with organizational support from the Humanitarian Engineering Program, the Department of Mining Engineering at Mines and the Keystone Policy Center.

David Holm, Executive Director of the Clear Creek Watershed Foundation addresses the summit attendees.
David Holm, Executive Director of the Clear Creek Watershed Foundation addresses the summit attendees.

The summit included panel discussions with stakeholders from multiple fields, mapping expectations for successful closures and creating a framework to guide better life-cycle management of active mines by learning from previous experiences.

“The summit discussions extended across stakeholder groups to include a broad set of concerns about the evaluation and management of the risks of mineral development, lack of consensus concerning reasonable expectations and goals for abandoned mine closure, and the assignment of responsibility for risks and actions,” said Priscilla Nelson, department head of Mines’ Department of Mining Engineering.  “Attendees brought perspectives from well beyond the bounds of Colorado and North America.”

The four panels focused on mine closure expectations with environment and community sustainability concerns in mind. In many cases, historic mines were operated before the current laws and regulations were in place, and stakeholders are now faced with issues that need further refinement in order to have a successful closure. Ultimately, the goal of the summit was to generate tangible actions to begin systematic remediation of existing abandoned mines prevalent in the western United States.

Overall, the summit provided the opportunity to discuss what the future of mine remediation and successful mine closures.

See more photos from the summit here.

Sources:

Agata Bogucka, Communications Manager, College of Earth Resource Sciences & Engineering | 303-384-2657 | abogucka@mines.edu

Ashley Spurgeon, Editorial Assistant, Mines Magazine | 303-273-3959 | aspurgeon@mines.edu

 

 

Mines students volunteering as part of Hike for Help.

This winter break, 16 Mines students will spend their three-week vacation volunteering in Khumbu Valley, Nepal, constructing a public restroom facility for the local community and aiding in repairing the local high school that was destroyed in an earthquake in 2015. Mines is partnering with Hike for Help, an organization that connects with communities in Nepal to work on projects that will have a high impact on the Nepali community.

“There are no public restrooms in the Khumbu Valley, which is the trail that leads to Everest,” said Rachel Osgood, an assistant teaching professor in Mines’ Liberal Arts and International Studies Division. “The people that live there have pit toilets and no sanitation system, so they don’t drink enough water because they don't have anywhere to go to the bathroom.”

Osgood, who will lead students on this international service learning trip, recalled how the founder of the Hike for Help organization, Lhakpa Sherpa, also the owner of the Sherpa House restaurant in Golden, Colorado, was struck by students’ reactions to the pit toilets on a previous community service trip. “Sherpa got together with other local leaders in the Lukla and Khumbu Valley regions and talked about how beneficial [constructing a public restroom facility] would be for the people of the area, particularly in terms of tourism,” said Osgood. The Nepali community agreed that this would be a valuable addition, giving the project a green light.

A young boy playing with his kendama in Nepal.

When approached to help with this project, Mines reacted without hesitation, and the community service trip filled up quickly, mostly with McBride Honors students who are eager to travel to Nepal and make a difference. “I am most looking forward to returning to the area that I helped support with Hike for Help last winter,” said chemical engineering student Chase Li. Engineering physics student, Peter Consalvi added, “To go over there and build (from scratch) a restroom that is going to greatly benefit the valley, we have a great chance to really help someone.”

But this service trip will have many benefits for Mines students as well. Trinity Wilson, a chemical engineering student, admitted, “This experience [will be] far out of my comfort zone; it will take me further from the things and people I depend on and challenge me mentally and physically to face my fears.”

Since the students are required to cover their own travel expenses, all of the fundraising will be put towards the service project—the materials and labor. “It’s pretty expensive, because the cement has to be transported up the valley and the only way to get there is by walking with some yaks or flying in a really small passenger plane,” explained engineering physics student Matthew Kowalsky.

The eventual goal is to build 40 of these restrooms within the next few years throughout the valley. Osgood added, “We want to make this a sustainable relationship between our community and the community in Nepal, because we have a local connection and it hits close to home.

Check out the video below for more information about Hike for Help:

https://youtu.be/iDriqFNG6EE

To support Hike for Help in its fundraising efforts to obtain supplies to help local citizens of the Khumbu Valley, visit giving.mines.edu/goldmine.

 

Contact:
Leah Pinkus, Communications Assistant, Colorado School of Mines 303-273-3088 lpinkus@mines.edu
Ashley Spurgeon, Editorial Assistant, Mines magazine | 303-273-3959 | aspurgeon@mines.edu

 

Professor Illangasekare (far right) receives the PSIPW Award from U.N. Secretary General Ban Ki-moon. Photo Credit: UN Photo/Eskinder Debebe
Professor Illangasekare (far right) receives the PSIPW Award from U.N. Secretary General Ban Ki-moonPhoto Credit: UN Photo/Eskinder Debebe

Congratulations to Tissa Illangasekare, distinguished chair and professor of civil and environmental engineering at Colorado School of Mines, who received the Groundwater Prize for the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW), one of the most prestigious awards for water research and the highest international honor in the field of groundwater.

Illangasekare received the award on Nov. 2, at the United Nations headquarters in New York, hosted by the U.N. Friends of Water and the U.N. Educational, Scientific and Cultural Organization (UNESCO).

Illangasekare was honored for his work to improve the fundamental understanding of fluid flow and chemical transport in porous media through innovative multi-scale experimentation and modeling. His work has led to the reliable prediction of the long-term fate of pollutants in groundwater systems. Most recently, Illangasekare has focused on problems in the development of technologies for secure storage of CO2 in deep geologic formations, which is expected to reduce atmospheric loading of greenhouse gases that contributes to global warming. 

Speaking at the U.N. ceremony, Illangasekare emphasized the importance of groundwater research and an interdisciplinary approach to solutions. “Groundwater is 30.1 percent of the freshwater in the world and is the most extracted natural resource," he said. "The groundwater problems of the coming decades are going to be driven by continually increasing demand, climate change, sea-level rise, chemical and natural pollutants, and issues of energy-water-food nexuses."

Illangasekare concluded his speech with thanks to his early mentors, research sponsors and family. He concluded by saying, "It is with excitement, profound appreciation and humility that I accept this award on behalf of my students, collaborators, research sponsors, and the AMAX endowment at Colorado School of Mines."

Illangasekare is the founding director of the Center for Experimental Study of Subsurface Environmental Processes (CESEP) and past recipient of numerous awards, including the Henry Darcy Medal from the European Geosciences Union. His research has led to use-management models for river basins in Colorado, methods to estimate floods in watersheds, dam safety analyses and environmental monitoring.

Established in 2002, PSIPW is a biannual international award that highlights innovation by scientists, inventors and organizations in five water-related fields that contribute to the sustainable availability of potable water and the alleviation of water scarcity throughout the world. The prize organization is headquartered at the Prince Sultan Research Center for Environment, Water and Desert at King Saud University in Riyadh, Saudi Arabia.

 

CONTACT:

Deirdre Keating, Communications Manager, College of Engineering & Computational Sciences | 303-384-2358 | dkeating@mines.edu
Ashley Spurgeon, Editorial Assistant, Mines magazine | 303-273-3959 | aspurgeon@mines.edu

[Updated Oct. 31]

2016 AGI Critical Issues Forum

The Payne Institute for Earth Resources at Colorado School of Mines teamed up with the American Geosciences Institute to host a series of events on the Mines campus that focused on the High Plains Aquifer. A free film screening of “Written on Water” took place Oct. 26, followed by the AGI Critical Issues Forum, Oct. 27-28.

Mines hosts film screening and forum on High Plains Aquifer

Groundwater is often a "transboundary" resource, shared by many groups of people across town, county, state and international boundaries. Changes in groundwater resources can create unique challenges requiring high levels of cooperation and innovation amongst stakeholder groups, from individuals to representatives at the state and federal government levels.

The Payne Institute for Earth Resources at Colorado School of Mines hosted two events centered around the High Plains Aquifer, Oct. 26-28.

According to the U.S. Geological Survey, “The High Plains Aquifer, which spans eight states from South Dakota to Texas, is overlain by about 20 percent of the nation’s irrigated agricultural land, and provides about 30 percent of the groundwater used for irrigation in the country.”

Free film screening of “Written on Water”
The series kicked off with a free film screening of “Written on Water” on Oct. 26 at Mines’ Ben H. Parker Student Center. The screening included an introduction by the film's director and producer, Merri Lisa Trigilio, followed by a question and answer session after the movie. 

“Written On Water” focuses on the Ogallala Aquifer and examines the conflicts, politics, economics and groundwater depletion in the High Plains region. Farmers and communities survive on the precious waters of the Aquifer, yet it is being depleted at alarming rates.

View photos from the film screening.

American Geosciences Institute Critical Issues Forum
Work by the Kansas Geological Survey indicates that some parts of the High Plains Aquifer are already effectively exhausted for agricultural purposes; some parts are estimated to have a lifespan of less than 25 years; and other areas remain generally unaffected (Buchanan et al., 2015).

The AGI Critical Issues Forum, “Addressing Changes in Regional Groundwater Resources: Lessons from the High Plains Aquifer," took place Oct. 27-28. The meeting covered multiple aspects of groundwater depletion in the High Plains. Break-out sessions identified lessons learned and best practices from the High Plains Aquifer experience that might apply to other regions facing changes in the Earth system. Keynote speakers included:

  • Sharon B. Megdal, University of Arizona Water Resources Research Center
  • Jason Gurdak, San Francisco State University
  • Merri Lisa Trigilio, Director/Producer, “Written on Water”

View photos from the forum.

About the Payne Institute at Colorado School of Mines
The mission of the Payne Institute for Earth Resources at Colorado School of Mines is to inform and shape sound public policy related to earth resources, energy and the environment. Its goal is to educate current and future leaders on the market, policy and technological challenges presented by energy, environmental and resource management issues, and provide a forum for national and global policy debate. For more information, visit EarthPolicy.Mines.edu.

About the American Geosciences Institute
AGI was founded in 1948, under a directive of the National Academy of Sciences, as a network of associations representing geoscientists with a diverse array of skills and knowledge of our planet. AGI provides information services to geoscientists, serves as a voice of shared interests in our profession, plays a major role in strengthening geoscience education and strives to increase public awareness of the vital role the geosciences play in society’s use of resources, resilience to natural hazards and the health of the environment. Learn more at AmericanGeoSciences.org.

CONTACT:
Kelly Beard, Communication Specialist, Division of Economics and Business, Colorado School of Mines | 303-273-3452 | kbeard@mines.edu
Agata Bogucka, Communications Manager, College of Earth Resource Sciences and Engineering | 303-384-2657 | abogucka@mines.edu

Paul Polak address a full house for his humanitarian engineering seminar on solving poverty via design.Sharing his broad world experience as an entrepreneur and activist, Paul Polak presented, “Prescriptions for Helping Poor People Help Themselves: What Engineers Need to Know,” to a large crowd of Colorado School of Mines students and faculty on September 20.

“Instead of trying to bring the newest technology to the poorest regions,” Polak said, “we need to listen and design based on the specific needs and environment of that community.”

Polak’s talk kicked off the Shultz Family Leadership in Humanitarian Engineering Speaker Series, a series aimed at changing the conversation about what engineering is for by showcasing leaders in humanitarian engineering and corporate social responsibility. Author of “Out of Poverty” and “The Business Solution to Poverty,” Polak offers an unconventional approach to solving poverty not through government programs or philanthropic efforts, but by designing for the market of the poorest people on the planet.

“Most design efforts are aimed at the world’s richest 10 percent, while nearly half of the population doesn’t have regular access to food, shelter or clean water,” Polak said, challenging Mines engineers to design affordable technologies that will increase the revenues of the poor.

Even prior to his talk, Polak has influenced design teaching at Mines. Several past humanitarian engineering projects have collaborated with International Development Enterprises (IDE), an innovative nonprofit design organization that Polak founded, located in Denver. Leslie Light, director of EPICS at Mines and a former project manager for IDE, has brought similar human-centered design principals to EPICS, Mines' first-year design course, such as the landmine detection project in fall 2015, and wheelchair redesigns in spring 2015.

SHULTZ HUMANITARIAN SCHOLARS

The five humanitarian engineering student scholars link arms for a photo.

2016-17 Humanitarian Engineering  Shultz Student Scholars: Michelle Pedrazas, Rosalie O'Brien, Melissa Breathwaite, Micaela Pedrazas, and Stephanie Martella

In addition to the lecture series, the Shultz Family fund also sponsors undergraduate students each year as Shultz scholars. The current five scholars are Melissa Breathwaite, Stephanie Martella, Michelle Pedrazas, Micaela Pedrazas and Rosalie O’Brien. Juan Lucena, director of humanitarian engineering, introduced them as “outstanding students who have demonstrated their commitment to connecting their engineering majors to humanitarian engineering in creative ways, all while maintaining excellent academic standing."

For example, inspired by Polak, Stephanie Martella, a chemical and biochemical engineering senior, is collaborating with John Persichetti, teaching associate professor, on designing chemical processes to produce a nutritious beverage for the poorest markets in the world.

“I got involved with Humanitarian Engineering, because I’m passionate about building relationships through engineering and communication,” Martella said. “I want to apply the engineering skills I’ve learned at Mines to solve problems for humankind.”

According to Lucena, as part of their scholarship, the scholars are also committed to mentoring and learning from low-income, first-generation students at Red Rocks Community College who are considering transferring into engineering at Mines.

 

SHULTZ FACULTY FELLOWS

Two professors sit outside as they begin their time as Humanitarian Engineering Faculty Fellows.

The new Humanitarian Engineering Shultz Faculty Fellows: Linda Battalora and Kathleen Smits

A third program funded by the Shultz Family Fund is the Humanitarian Engineering Faculty Fellows. Lucena announced this year’s new faculty fellows as Civil and Environmental Engineering Assistant Professor Kathleen Smits, and Petroleum Engineering Teaching Professor Linda Battalora.

In spring 2017, Smits and Battalora will offer two courses of interest to students with minors in humanitarian engineering as well as students in their own departments. Smits is adding a humanitarian engineering focus to CEEN 475: Site Remediation Engineering, which will culminate with a feasibility study on an actual environmental site in a low-income country as the students’ final project.

Battalora is developing a pilot course, PEGN 498A: Environmental Law and Sustainability, which will focus on societal impacts and ethics in the discussion of fundamental environmental regulations, policies and case studies.

Humanitarian engineering at Mines continues to grow, with increased emphasis on corporate social responsibility as well as designing for the world’s greatest problems.

 

CONTACT:

Deirdre Keating, Communications Manager, College of Engineering & Computational Sciences | 303-384-2358 | dkeating@mines.edu
Ashley Spurgeon, Editorial Assistant, Mines magazine | 303-273-3959 | aspurgeon@mines.edu

 

 

Faculty in the departments of Chemistry and Chemical and Biological Engineering have been awarded $320,000 by the National Science Foundation to turn bacteria into a more sustainable source of jet fuel.
 

Fiona Davies and Nanette Boyle inspect a dish of blue-green algae.

Chemistry Assistant Research Professor Fiona Davies, left, and Chemical and Biological Engineering Assistant Professor Nanette Boyle inspect a dish of blue-green algae.

CBE Assistant Professor Nanette Boyle, principal investigator, and Chemistry Assistant Research Professor Fiona Davies, co-PI, are using photosynthetic bacteria commonly known as blue-green algae to produce a compound called limonene.

“Limonene is the compound in citrus essential oils which gives them their distinctive scent,” Davies said. “It’s an ideal precursor for aviation fuel because of its high energy density and structural similarity to jet fuel.” This means limonene can simply be blended with current petroleum-based fuels with no changes needed in the existing transport fuel infrastructure.

While some of the increasing demand for energy in the transportation sector can be replaced with vehicles that run on renewable electricity, the aviation, shipping and long-haul trucking industries will still require liquid fuel.

The bacteria—Synechococcus sp. PC 7002—is very similar to plants in that it grows on carbon dioxide and light alone. It essentially functions as a catalytic factory where enzymes in the cell directly convert carbon dioxide into limonene.

“It doesn’t produce limonene naturally, but we have engineered it to produce limonene by introducing a single enzyme from a limonene-producing plant—spearmint,” Boyle said. “Our current limonene production yields are not high enough to be economically feasible, therefore the funded research is focused on rewiring the metabolism of the cell to direct more carbon toward limonene.”

Boyle and Davies will use computational modeling to predict how they can divert more carbon flux to limonene, then use genetic engineering techniques to modify the bacterium’s metabolism to increase production.

Cyanobacteria—or bacteria that obtain their energy through photosynthesis—have been engineered to produce various industrially useful compounds such as ethanol, butanol and isoprene, which Davies has worked with previously. However, yields are typically low, and little progress has been made because the metabolism of the cell is so tightly controlled. “Our study will actually pinpoint where the tightly controlled parts of metabolism are so that we eliminate them specifically,” Davies said.

“Overall, our work will develop a far more sustainable and environmentally friendly source of fuel for the aviation industry because it is produced directly from carbon in the atmosphere instead of the limited fossil fuel reserves, and it removes carbon from the atmosphere to assist with efforts to reduce global warming,” Boyle said.

The project will also include educational activities, with Boyle and Davies mentoring a team of college and high school students to participate in the International Genetically Engineered Machines competition. The program, also known as iGEM, promotes active learning in the field of molecular biology.

 

Contact:
Mark Ramirez, Communications Manager, College of Applied Science & Engineering | 303-384-2622 | ramirez@mines.edu
Ashley Spurgeon, Editorial Assistant, Mines magazine | 303-273-3959 | aspurgeon@mines.edu

A multidisciplinary team, led by the Ben L. Fryrear Professor of Civil and Environmental Engineering Tzahi Cath, has received a $1 million award from the National Science Foundation to develop an innovative monitoring and control system for small wastewater treatment facilities.

The project, titled “Self-Correcting Energy-Efficient Water Reclamation Systems for Tailored Water Reuse at Decentralized Facilities,” draws on the bioreactor at Mines Park, which treats more than 7,000 gallons of domestic wastewater each day, and will integrate existing and new wireless sensor networks to monitor water quality and for process monitoring and control.

“Improved monitoring of water quality and early warning of treatment system vulnerabilities are critical to protecting the public and the environment,” said Cath. “The smart service system we are building uses a network of simple, existing sensors and a novel wireless sensor network. These new, smart sensor technologies can learn from past performance, predict future performance and adapt the system to achieve preset objectives.”

Water pipes with electronic gauges are shown, as the professor kneels to read the information and a student records the data.

Professor Tzahi Cath and a graduate student take readings at the AQWATEC Laboratory.

In addition to being more energy and resource efficient, the new system will benefit many small communities that operate decentralized wastewater treatment facilities and don’t have the resources to improve their system.

Cath also attributed the project’s selection to the foundation laid by the Engineering Research Center for Re-Inventing the Nation’s Urban Water Infrastructure, also known as ReNUWIt, at Colorado School of Mines. “All of this is only possible because ReNUWIt at Mines that has been building these partnerships in an effort to develop new strategies for water management and treatment,” said Cath.

After testing the new monitoring and control system at Mines Park, the team will work with industry partners from Aqua-Aerobic Systems and Kennedy/Jenks Consulting as well as broader context partners such as Ramey Environmental in Frederick, Colorado, to deploy, incorporate and test the system at existing small, decentralized treatment plants.

The team includes Professor Tracy Camp from the Division of Computer Science, Assistant Professor Salman Mohagheghi from the Division of Electrical Engineering, and Associate Professor Hussein Amery from the Division of Liberal Arts and International Studies, as well as professors Amanda Hering and Michael Poor at Baylor University. The team will also include graduate and undergraduate students from CEE and CS.

The grant is one of 13 awarded by the NSF’s Partnerships for Innovation: Building Innovation Capacity program, in support of innovative partnership projects that create new human-centric service systems.

 “The National Science Foundation fosters innovation and partnerships between academic researchers and industry, catalyzing interdisciplinary projects to understand and design smart systems and technologies of the future,” said Grace Wang, acting assistant director, NSF Directorate for Engineering. “These 13 projects are at the forefront of the human-technology frontier, driving innovation to solve problems to benefit society and improve life as we know it.”
 

CONTACT:

Deirdre Keating, Communications Manager, College of Engineering & Computational Sciences | 303-384-2358 | dkeating@mines.edu
Mark Ramirez, Communications Manager, College of Applied Science & Engineering | 303-384-2622 | ramirez@mines.edu

Pages

Subscribe to RSS - Sustainability