Imagining cookie crumbs as dirt and gummy worms as organic matter, Colorado School of Mines students introduced elementary school students to the concept of oil and gas formation in one of several science demonstrations held during the 6th Annual Math & Science Night at Shelton Elementary on Nov. 4.

Mines students had a large presence at the math and science expo: The Water-Energy, Science and Technology (WE²ST) Center ran nine stations and several other Mines student organizations also participated. Shelton’s Math & Science Night provides parents and students a fun, engaging and hands-on learning environment with the goal to get students excited about math and science.

Karen Brown, principal of Shelton, attributed the success of the program to the participation of Mines students. “We are so thrilled to have built a partnership with Mines and its students,” said Brown.

“Since its inception, Shelton’s Math and Science Night has always been well attended because of the expertise and fun the Mines students, as well as other presenters, bring to the table,” Brown continued. “They are also great role models for our students.”

According to Andrea Blaine, assistant director of WE²ST, “one of the strongest aspects of WE²ST’s participation was our ability to establish a meaningful connection between Mines and the larger community. Our presence at the event allowed us to educate children and adults on important current environmental topics, such as water and energy, in a non-threatening, fun atmosphere.”

In addition to the edible “fossil fuels” demonstration, students used a four-foot square model to see the paths of water within a watershed and community at the EnviroScape station and received hands-on experience learning about osmosis, the properties of gasses, aquifer sand tanks, and water use in the U.S. compared to other countries.

“It really is fantastic and wonderful that Shelton offers this type of thing,” said Alison Bodor, a Shelton Elementary School parent, who complimented WE²ST in particular on their organization.

Mines Blasterbotica Team, dressed like cowboys for the event’s Wild West theme, also had a large number of participants. They demonstrated how robots could be used for mining in space exploration.

Mines’ Nao robot, “Gold,” was a star attraction for the children. Mechanical Engineering Professor John Steele encouraged his student Steven Emerson to participate and showcase the robot.

“She was a big hit. The kids seemed a little awestruck when she did her choreographed demo,” Emerson said. He also noted that teaming up with the Mines Society of Asian Scientists and Engineers (SASE) chapter helped, as they provided other demos that allowed the robot time to cool off between groups of children.

Mines Society of Geophysicists, Society of Physics Students, Society of Women Engineers, the Integrated GroundWater Modeling Center at Mines, and the Re-Inventing the Nation’s Urban Water Infrastructure (ReNUWIt) Research Center also set up hands-on learning demonstrations for the students of Shelton Elementary School.


Deirdre Keating, Information Specialist, College of Engineering & Computational Sciences | 303-384-2358 |
Karen Gilbert, Director of Public Relations, Colorado School of Mines | 303-273-3541 |

Colorado School of Mines Civil and Environment Professor Tzahi Cath has been awarded a $1.5 million grant from the Geothermal Technologies Office of the U.S. Department of Energy to study membrane distillation desalination of impaired water using low-grade heat from geothermal power plants. 

The grant is part of a three-year, $4.8 million project led by the National Renewable Energy Laboratory in collaboration with Sandia National Lab, University of California, Riverside, GE, and Ormat. 

Geothermal resources and water scarcity are common features of the western United States. Within this region, low-temperature (<100 °C) geothermal resources have wide geographic distribution, but are highly underutilized because they are inefficient for power production.

A potentially useful application of low-enthalpy geothermal energy, from low-temperature resources or rejected heat from high-temperature geothermal power plants, is the desalination of impaired waters.

Cath’s research focuses on water and wastewater treatment and reuse. He was formerly the systems leader for the Engineering Research Center for Re-Inventing America’s Urban Water Infrastructure (RENUWIt), which is funded by the National Science Foundation.

Recently, Cath and Chemistry and Geochemistry Professor Kim Williams hosted a Membrane Research Workshop at Mines that brought together faculty and groups on campus conducting research on membrane separation processes. As many as 60 faculty members discussed the science and applied domains pertinent to their research with the goal of identifying opportunities for collaboration and program development. 

The workshop concluded with a group discussion on relevant topics, including possible collaborative proposals, additional ways to promote dialogue and collaborations, strategic off-campus collaborators, and the new NSF and DOE focus and upcoming funding opportunities in the area of energy-water-food nexus.


Deirdre Keating, Information Specialist, College of Engineering & Computational Sciences | 303-384-2358 |
Karen Gilbert, Director of Public Relations, Colorado School of Mines | 303-273-3541 |


GOLDEN, Colo., April 22, 2015 – The Colorado School of Mines Office of Special Programs and Continuing Education will host the fourth International School for Materials for Energy and Sustainability July 13-20. 

The weeklong school will present state-of-the-art and future perspectives for materials as they can be applied to energy generation and storage for sustainable energy technologies.

Eleven students are part of a humanitarian engineering course that is designing plans to relocate a village displaced by mining operations in the Democratic Republic of the Congo in Africa. The course “Projects for People,” taught by corporate social responsibility and Human Centered Design professor Benjamin Teschner, is geared toward students interested in the social challenges associated with the extractive industries and how engineering helps address these problems.

During the first class, Teschner gave each student $20 to design a prototype that would act as a tool to explain to someone living in the village how their lives would change after relocating.

“Commonly, students think of prototypes only as something they build to test their idea or to help themselves as engineers refine a design. What this assignment does is force them to think about how to design a prototype that will show someone else how their idea works so they can engage non-engineers in their design process,” Teschner said. “Students will immediately lay their assumptions about the problem out on the table for everyone to see—assumptions that they didn’t even know they were making.”

Aina Abiina is one of two graduate students in the class. The course is not required for Abiina’s Liberal Arts and International Studies degree, however she chose to enroll because she wanted to learn about the interaction between multi-national companies and people that are affected by these companies’ activities.

“In order to minimize a negative impact on the environment of those people and to optimize the production of the mine, a proper assessment is needed,” said Abiina. “Designing solutions to this complex engineering and social challenge will help students gain valuable skills in human-centered design methods, research techniques, brainstorming tools and approaches.”

Over the next few months, teams in two groups will have three phase gate reviews that will explore problem definition, design exploration and design analysis. The unique thing about this course is that the grades and passage of the phase gates are not linked. Grades are determined instead by how the team works within these phase gates.

“I hope students are able to develop empathy for people who use the things they design and that they recognize by bringing these people into the design process, they can create better, more sustainable engineering outcomes,” Teschner said.

Chemical and Biochemical Engineering student Karyn Burry hopes to end the course with better design flow skills.

“I am a super organized person and that usually is really helpful in a group, but this class is pushing me out of the organizer position into a position where I am forced to think outside the box in attempt to find a solution to this relocation project,” Burry said.

To better understand the village and relocation process, students are working with Thabani Mlilo, manager of sustainability for the America region at AngloGold Ashanti, who is acting as the ‘client’ on the project. Mlilo’s goal is to catalyze a paradigm shift early enough in an engineer’s education so that it is “part of their DNA” and a natural part of how they approach problems or solutions wherever there is a sustainability aspect to their work.

“In the sustainability field, one of the biggest challenges we have is shifting the paradigm of professionals in technical and scientific disciplines to the changing landscape of the business-society interface,” Mlilo said. “My impression of Mines students is that they don’t shy away from a challenge and are not afraid of treading unknown waters.”

For questions about the course, please contact Benjamin Teschner at



Kathleen Morton, Communications Coordinator / 303-273-3088 /
Karen Gilbert, Director of Public Relations / 303-273-3541 /

This story appears in the 2014-15 issue of Mines' research magazine, "Energy & the Earth."


Water and oil don’t mix. With oil and gas production and water, it’s quite the opposite.

Getting at the unconventional oil and gas reserves at the heart of America’s energy boom can take millions of gallons of water per well before the first hydrocarbons emerge.[1] One estimate puts the hydrologic demands of the 80,000 wells in 17 states drilled since 2005 at more than 250 billion gallons.[2] That’s three times the volume of Denver Water’s Dillon Reservoir.

Yet in the western United States and elsewhere, geologic “accident” has placed some of the most promising unconventional oil and gas reserves below parched landscapes.

Mines researchers are at the forefront of enhancing our still-nascent understanding of this modern story of oil and water, and more broadly in the development of new ways to boost freshwater resources in an era of rising demand and growing scarcity.

ConocoPhillips’ recent $3 million gift to establish the new Center for a Sustainable WE2ST (Water-Energy Education, Science and Technology) is the latest testament to Mines’ strengths in water.

The idea is to focus on a single formation such as the Niobrara, taking a comprehensive look at the complex technical and social interdependencies of oil and gas development and limited water resources. Professor John McCray, head of Mines’ Civil and Environmental Engineering Department, describes a wide-ranging effort, involving remote sensing and hydrological models to map out water sources and the tools of geochemistry, hydrology, microbiology and environmental engineering to develop ways to clean up the water that emerges from the depths during oil and gas operations. The work also will involve a strong social-sciences component led by Mines anthropologist Professor Jessica Rolston, McCray said, to help define ways to communicate the actual risks of unconventional energy development and get energy companies, regulators and the public on the same factual page.

“It’s a partnership with ConocoPhillips that can break new ground, and one that doesn’t exist outside of this center,” McCray said. “We want to come out and be the honest broker.”

Education is a key component of the ConocoPhillips center, said Associate Professor Terri Hogue, who is directing the new center. A big part of the budget will go to fellowships for 15 to 20 masters and PhD students, she said, in addition to 10 undergraduate fellowships each year. The center will attract top-notch talent all focusing on the nexus of water resources and energy development.

Professor Tzahi Cath is among those at Mines already at work at that confluence. Cath directs Mines’ Advanced Water Technology Center (AQWATEC), which is developing a range of water-treatment technologies. This spring, the masters students in Cath’s Environmental Engineering Pilot Lab course were studying if adding an inky slurry of activated charcoal to the city of Golden’s water treatment process might help remove the organics that have spiked in reservoirs along Colorado’s Front Range after the 2013 flood. A green garden hose snaked from a tank in the bed of the AQWATEC pickup parked on the sidewalk outside Coolbaugh Hall. It fed a bench-scale model of Golden’s water treatment plant, its upper tanks full of fluid like curdling apple cider. If it worked here, they would test the activated charcoal in a Mines pilot plant housed in the treatment facility itself and, assuming the city adopts the approach, would help with the transition to the full-scale plant.

“Usually, the city adopts our recommendations,” Cath said.

A bit downhill, in AQWATEC’s space in Mines’ General Research Laboratory, PhD student Bryan Coday was working near several hip-high plastic drums, some encrusted with salt (they’re for a project testing new ways to extract valuable potassium sulfate from the Great Salt Lake).

Others contained produced water from hydraulic fracturing operations, and Coday was working on a system to cleanse it using low-pressure osmosis and flat-sheet polymeric membranes. To the touch, the membranes felt like high-end wrapping paper, but in practice is a very sophisticated material. The system uses salt water to attract clean water from the deep-brown produced water across the membrane, which retains contaminants.

“Produced water is difficult to treat because of the hydrocarbons and complex organic compounds, plus high salinity,” Cath said. Mines environmental chemist Professor Christopher Higgins is working with Cath to identify just what chemicals from the different samples of produced water cross the membranes, and how they can improve the process to produce even drinking-quality water from produced water.

A test system had performed well enough that Coday and research assistant Mike Veres were now in the midst of building a pilot-scale system. “Harnessing the natural chemical energy of brine as the driving force for wastewater treatment has its advantages,” Cath said. “Such systems are mechanically simpler, take less energy, and are easier to clean because the grime hasn’t been rammed into filter pores as happens with high-pressure systems.”

If some combination of low-pressure filtration and microbial treatment (another AQWATEC project being tested across the lab in columns of activated carbon next to the AQWATEC aluminum boat) can economically bring produced water to the high standards of municipal wastewater treatment, the benefits are hard to miss. Water locked up two miles below could be released into streams in drought-prone regions, actually boosting the water budget. And oil and gas operations could reuse some portion of this new resource in their hydraulic fracturing operations. Coday is enthusiastic.

 “It’s a great opportunity to work on a project where industry is moving at such a quick pace on the energy side, on the water side and on the regulatory side,” he said.

Another major project has a similarly sweeping purview, but pertains to urban water use. Since 2011, Mines has teamed with Stanford University, the University of California at Berkeley and New Mexico State University on a 10-year, $40 million effort that aims to transform how cities in the arid West use and reuse water. The program, called Re-Inventing the Nation’s Urban Water Infrastructure (ReNUWIt), is the first National Science Foundation-funded Engineering Research Center to focus on water issues.

McCray, who leads the Mines effort, said a dozen Mines faculty are leading or working on some 20 ReNUWIt projects. Hogue is spearheading an effort involving several Mines colleagues to determine the potential impact of August 2013’s 257,000-acre Sierra Nevada Rim Fire on water supplies to San Francisco and surrounding counties. Cath’s team is refining a portable, commercial-scale sequence batch membrane bioreactor that has proven its mettle with the wastewater from the apartments at Mines Park – capable of producing drinking water from domestic wastewater. Mines professors Tissa Illangasekare and Kate Smits lead a project that is developing technology to allow underground aquifers to treat and store water and then re-use it rather than letting it escape downstream. They are researching the use of sensors that provide real-time feedback on system performance, so decisions can be made to improve operation efficiency. Mines Associate Professor Linda Figueroa is working with the Plum Creek Wastewater Authority south of Denver on a pilot-scale system using anaerobic wastewater treatment. The system has been in operation for 1.5 years and has reduced more than 40 percent of the influent organic matter without the expense of oxygen (unlike traditional aerobic methods) and, as a bonus, produces energy while it cleans wastewater.

As with the ConocoPhillips center, ReNUWIt involves a heavy social science component. That’s because, for all the technological capabilities on display at Mines, the biggest challenges facing smarter water systems may reside between our ears. People just don’t like the idea of drinking reclaimed water (in Singapore they call it NeWater), McCray said, even though that’s what the South Platte River really is. Collectively, such apprehensions coalesce into powerful social and political barriers.

 “They’re by far the biggest hurdles to clear if we’re going to have any change in the way we develop our infrastructure,” McCray said.


This story appears in the 2014-15 issue of Mines' research magazine, "Energy & the Earth."

For those of us residing on the planet’s surface, the term “shale” evokes visions of flaking layers of rock you can all but peel away by hand. Oil and gas shale is nothing like this. Pick up a cylindrical core brought up from a reservoir two miles below – from the Bakken in North Dakota, the Niobrara in Colorado, the Vaca Muerte in Argentina, it doesn’t matter – and it’s heavy and solid like a hunk of marble. The hydrocarbons are locked inside, perhaps 100,000 times more tightly than would be the case were it merely mixed into concrete.

This is the stuff, though, of the American – and, increasingly, global – boom in unconventional oil and gas. You can’t just drop a well bore into rock like this and watch hydrocarbons gush out. You muse use advanced horizontal drilling and hydraulic fracturing technologies to release the oil and gas. Roughly one-third of the U.S. natural gas production heating our homes and fueling our factories is won this way. Two-thirds of all rigs are drilling horizontal wells. Unconventional energy, at least as applies to shale oil and gas, has become conventional.

Hydraulic fracturing has been around for decades, but we’re still learning about it. What are the true environmental impacts? How can we increase yields to bring more output per well and so have fewer wells, lower costs, cut trade imbalances and lessen the impact on the planet? Can these same techniques be applied to renewable geothermal technologies? Researchers at Colorado School of Mines are working to answer these and other questions via a broad set of disciplines and several noteworthy vehicles. Among them include the Marathon Center of Excellence for Reservoir Studies (MCERS); the new ConocoPhillips Center for a Sustainable We2st (Water-Energy Education, Science and Technology); and a new National Science Foundation (NSF)-sponsored program to understand the risks of natural gas development to the Rocky Mountain Region’s air and water.

As Mines Professor Dag Nummedal, who directs the Colorado Energy Research Institute, put it, “We really focus on making fossil energy more sustainable. That means reducing CO2 emissions, reducing methane emissions, and doing energy development in ways that allow the fossil energy industry to coexist with clean water, agriculture, breathable air and optimal temperatures.”

As part of a five-year, multi-institution NSF project, Mines researchers will focus on quantifying what those risks actually are, said Professor Will Fleckenstein. In the public arena in particular, assertions about the environmental and public health impacts of hydraulic fracturing have not infrequently outstripped their scientific basis, he added.

The projects include a study of the stresses in the cement sheaths and well casings for a better sense of what they can actually handle, he said. Fleckenstein is at the forefront of such work, having invented a technology, now ready for market, that uses a pressure test to ensure a sound hydraulic seal at depths of 300 to 2,000 feet, the zone of freshwater aquifers. The team will also examine databases relating to hydrocarbon migration for a better sense of if, how, and how often it happens.

Elsewhere at Mines, researchers will use a wind tunnel filling what used to be the Volk Gymnasium pool to better grasp how methane from natural gas production migrates through surface soils. Ground and aircraft-based sensors are sometimes finding methane hot spots with no obvious methane sources. That ground-based and air-based sensors tend to disagree on the volume of methane leaking has made the work all the more urgent, said Kathleen Smits an assistant professor. PhD student Ariel Esposito was at work on a small-scale version of the experiment at the pool’s edge. She would feed methane into the bottom of a tank of fine gravel, sand and water and detect it through sensors on top at a rate of 500 samples per second.

“It’s a really important field because there’s a lot of uncertainty about the amount of gas that’s leaking,” Esposito said. “We’re trying to lend some insights into the underlying processes.”

Meanwhile, Mines is applying its renowned strengths in reservoir characterization to boost the production of hydraulically fractured wells, which makes both economic and environmental sense. There’s a big potential upside, said Professor Hossein Kazemi, who co-directs MCERS: current production techniques only yield about 10 percent of unconventional oil, compared to 30 to 40 percent for conventional reservoirs. The work ranges from major field studies of the Bakken, Niobrara and Vaca Muerte led by Professor Steve Sonnenberg to lab experiments focusing on the nanoscale properties of reservoir rock.

As with much of the work at Mines, the research involves both experimentation and computer modeling. In one of Kazemi’s Marquez Hall labs, Mines PhD student Younki Cho has spent two years building a core flooding experiment to measure shale permeability at the nanoscale. The experiment can also inject surfactants or carbon dioxide to simulate enhanced oil recovery, he said. The stainless-steel setup was forcing pressurized brine into a 1.5-inch by 2-inch cylindrical rock core at confining stress of 2,625.7 pounds per square inch (psi) and pressure differential of 2,100 psi, producing a flow of 0.003 cubic centimeter (cc) per minute.

“It’s a very slow rate because permeability is so small,” Cho said. “You have to be very patient.”

Downstairs, PhD student Somayeh Karimi was spinning cores in an ultracentrifuge humming at 13,000 rpm. It was 420 hours into a cycle.

“Right now we have not seen any published data on direct measurement of capillary pressure with reservoir fluids in tight shale rocks,” she said. The results will feed into modeling of how much oil and gas might be recoverable, how fast, and how long that recovery might take, Karimi added.

Over in Professor Marte Gutierrez’s Brown Hall lab, PhD student Luke Frash was fracturing rocks of his own, but larger ones of about a cubic foot. Using a black-steel cell of his own design, Frash applies heat and pressure in three dimensions, and then drills into and hydraulically fractures cubes of shale, high-strength cement and granite, testing for strain, temperature, pressure, sound, even micro-earthquakes. The idea is to understand the rock-mechanical behavior of underground formations, Gutierrez said.

“It’s a scale model of what’s going on in the field,” Gutierrez said.

The granite cubes in Frash’s lab are for studies of hydraulic fracturing for renewable geothermal applications, an active field of study at Mines, said Associate Professor Bill Eustes. He and Fleckenstein are working on a project with the National Renewable Energy Laboratory to see if multi-stage hydraulic fracturing technology used in unconventional shale can be applied to geothermal energy. There are many challenges, Eustes said – among them, thicker geothermal well bores and much more heat.

These and other efforts, including work to characterize possible reservoirs for carbon sequestration and storage, illustrate how the definitions of conventional, unconventional and renewable energy are starting to blur. It’s a fascinating time to be in the energy business, Nummedal said.

“The push for sustainability is driving technology at a faster rate of change than ever before,” he said.



Researchers at Colorado School of Mines took delivery of the world’s first Geothermic Fuel Cell (GFC) on Aug. 5, 2013. 

Designed and built by Delphi, headquartered in Rochester, NY, for IEP Technology, of Parker, Colo., the GFC will efficiently generate 4.5 kW of electricity from natural gas fuel. 

Its real value lies in the heat that it liberates while generating this electricity -- scientists and engineers seek to harness this heat to recover unconventional oil. This electricity comes as a useful and valuable byproduct of the oil-recovery process. 

In partnership with IEP Technology and Delphi, students, engineers, and faculty will characterize the thermal and electrical performance of the geothermic fuel cell at the Colorado Fuel Cell Center laboratory on the Mines campus. 

The solid-oxide fuel cells packaged within the GFC operate at high temperature (nearly 750 ºC) to convert natural gas into electricity and heat. When implemented, clusters of GFCs will be placed into the earth within oil shale formations for oil recovery. GFCs present a potentially transformative technology for accessing the world’s vast oil-shale reserves, which are estimated at 4.8 trillion barrels worldwide, in an environmentally responsible manner.

“This privately funded research and development project leverages the past investments in infrastructure made by Colorado School of Mines and federal agencies in the Colorado Fuel Cell Center. Such university-industrial partnerships are common at Mines, and create unique learning experiences for both our students and faculty, while answering important questions facing our industrial partners in bringing such technologies to market,” said Dr. Neal Sullivan, Mines associate professor of mechanical engineering.

To learn more about geothermic fuel cells, visit the IEP Technologies website:

Learn more about the Colorado Fuel Cell Center at



Subscribe to RSS - Sustainability