Three Mines students in the Advanced Steel Processing and Products Research Center (ASPPRC) have been named student representatives to the boards of ASM International societies.

Mary O’Brien, Jonah Klemm-Toole and Rachael Stewart, all in the Department of Metallurgical and Materials Engineering, were chosen as a part of ASM International’s Student Board Member Program.

O’Brien, a master’s and PhD student, was named to the International Metallographic Society board. She is researching the effects of microstructure on hydrogen-induced cracking in pipeline seals for oil and gas applications.

“The International Metallographic Society in particular is interested in the characterization of materials and that is everything I love,” O’Brien said. “I believe that the first step to solving all materials problems is to characterize what the problem is in the first place.”

Klemm-Toole, a PhD candidate, was picked for the Heat Treating Society board. His research involves the development of advanced steels for nitrided transmission gears in order to make them more fatigue-resistant and, potentially, smaller and lighter.

“I’m excited to meet the people who are involved on the board and I’m interested to learn more about what the industry wants from graduating students,” Klemm-Toole said.

Stewart, a master’s student, was chosen to serve on the Failure Analysis Society board this year and was a student representative on the ASM International board last year.

“I felt like my role was very important and I worked hard to make my voice heard,” Stewart said. “I know and see things that others on the board won’t and I’m in touch with a unique part of the member base.”

“Because the ASPPRC is very heavily industrial-focused, I think that lends itself to us being chosen,” Klemm-Toole said.

“There’s a twofold advantage to this role: first, it gives you access to some really great scientific minds and you become closer to these names that you’ve only seen in literature. Second, if you do these extracurricular opportunities, more career options open up,” O’Brien said.

The student board member positions are one-year terms and include board meetings and teleconferences where they will speak on behalf of the student members of those organizations.


Joe DelNero, Digital Media and Communications Manager, Communications and Marketing | 303-273-3326 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

A Colorado School of Mines professor is working to remove chemicals and potentially harmful substances from the groundwater supply in Fountain, Colorado.

Chris Bellona, assistant professor in the Civil and Environmental Engineering Department, and a team of researchers have just finished Phase I of their project, testing different ways to remove perfluoroalkyl substances from the city’s groundwater supply.

“Various municipalities across the U.S. are struggling with these perfluoroalkyl substances,” Bellona said.

Perfluoroalkyl substances, or PFASs, are a large group of man-made chemicals used in a wide variety of products, often to make them more stain-resistant, waterproof or nonstick. The health effects of PFASs in humans are not well understood, but studies have found that animals exposed at high levels resulted in changes in the function of the liver, thyroid and pancreas, and changes in hormone levels.

Communities near airports and firefighting training areas that have used aqueous film-forming foams to fight fuel fires have been especially affected.

“The chemicals that are in these foams get into the ground and into the groundwater and they are mobile and they don’t break down,” Bellona said. “In the U.S., there’s an estimated five million people who have these chemicals in their drinking water supplies.”

This includes municipalities near Colorado Springs. The three utilities that still have groundwater available for use are Security, Widefield and Fountain. This led to Bellona’s current project, “Pilot scale evaluation of the efficacy of granular activated carbon for perfluoroalkyl substance removal at the City of Fountain.”

“We starting working with the city of Fountain because they traditionally use groundwater part of the year and their levels of PFOA and PFOS exceed the EPA health advisory limit,” Bellona said. “They are going to need to put in a treatment system using granular activated carbon (GAC). They approached us to do a pilot scale study.”

GACs can be made in different ways, but it is usually coal burned in the absence of oxygen, then activated. With a large surface area, GACs can absorb large amounts of contaminants.

“The PFASs are relatively hydrophobic, so they stick to the carbon,” Bellona said. “Activated carbon works for a variety of contaminants, but eventually becomes exhausted. Part of this study was to look at how long we could operate the carbon before we have breakthrough of the contaminants.”

The study evaluated four different carbons side by side for the city’s groundwater.

“There are a lot of carbon options but it hasn’t been established which could be most effective,” Bellona said. “The goal of this project is to learn more by using four commercially available options.”

The next phase will compare the effectiveness of the top-performing activated carbon option to ion exchange, another way of filtering perfluoroalkyl substances, and the cost-benefit trade-offs.

“Ion exchange is more expensive but it can be regenerated on site; however, you have to deal with this waste stream,” Bellona said. “That may be more advantageous than dealing with the spent carbon residual. In addition, ion exchange resin may provide for longer treatment for these compounds compared to activated carbon.”

“These compounds are very recalcitrant and there is no silver bullet that has been developed for treatment,” Bellona said. “We aren’t only looking at these substances above the health advisory level. We are looking at a wide variety of these substances and how well activated carbon works on them.”

On this research project, Bellona has been working with diverse faculty and staff from the Civil and Environmental Engineering Department and the Advanced Water Technology Center including associate professor Chris Higgins, professor Tzahi Cath, research assistant Tani Cath, lab manager Kate Spangler, research associate and facility manager Mike Veres, as well as Charlie Liu, a doctoral student in Civil and Environmental Engineering Department.  


Joe DelNero, Digital Media and Communications Manager, Communications and Marketing | 303-273-3326 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

Colorado School of Mines was ranked first in the nation among colleges offering degrees in engineering according to College Factual, a website dedicated to helping students find the best college fit.

The ranking listed schools with successful engineering programs using factors including graduate earnings, accreditation and overall college quality. Engineering physics was listed as the best-ranked major at Mines and the average starting salary for Mines graduates was $67,000.

Additionally, College Factual ranked Mines fourth overall in a list of the best Colorado colleges. 


Joe DelNero, Digital Media and Communications Manager, Communications and Marketing | 303-273-3326 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

Fleckenstein delivers his talk.A Colorado School of Mines adjunct professor of petroleum engineering delivered a talk about hydraulic fracturing to the Weld County Council, which he will also take on his world tour as a Society of Petroleum Engineers distinguished lecturer for 2017-2018.

Will Fleckenstein presented "Shale Development —  Does Cheap Energy Really Mean Flaming Tap Water?" to the council July 17. He will deliver the same presentation at locations around the world, with talks already scheduled in Vancouver, Edmonton and Clairmont in Canada, and Comodoro Rivadavia and Buenos Aires in Argentina.

In light of the Firestone, Colo., home explosion in April related to an abandoned gas flowline, the Colorado Oil and Gas Conservation Commission ordered that all oil and gas lines within 1,000 feet of a building be tested. Shortly after the incident, nearly 3,000 wells across the state of Colorado, many in Weld County, were temporarily shut down until further inspections could be performed. As of July, the Greeley Tribune reports that few of these lines failed.

Fleckenstein spoke with the Weld County Council about hydraulic fracturing, its history and how to protect aquifers during the “fracking” process. Having conducted a research study on the Wattenberg Field sponsored by the National Science Foundation, he was able to bring practical results to the table. Fleckenstein’s research found that 10 wells out of 18,000 had leakage, and said if a well is properly drilled and completed, the chance of leakage is very small compared to older methods.

Photo courtesy of Linda Kane, Weld County Council.

Agata Bogucka, Communications Manager, College of Earth Resource Sciences & Engineering | 303-384-2657 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

REU program participants share their research at the poster session.

Students from universities across the United States and Ireland participating in Research Experiences for Undergraduates (REU) programs at Colorado School of Mines presented their work at a poster session last week.

Forty-two students presented their research covering topics in renewable energy, water infrastructure, chemistry and chemical engineering at the poster session held on July 27, 2017.  Mines hosts three REU programs through the Renewable Energy Materials Research Science and Engineering Center, the Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure and Advancing Polymer Materials by Integrating Chemistry and Chemical Engineering. These programs support the education and training of undergraduate students in a closely mentored independent research setting.

“Undergraduate research programs exist to help students transform themselves into contributing members of the professional research community,” said Physics Teaching Professor Chuck Stone, director of the renewable energy REU summer program.

“I learned that research can be very frustrating,” said Mines mechanical engineering student Gretchen Ohlhausen. “But it’s very rewarding when you finally get the results you are looking for. This has made me want to get a master’s and work in research for the rest of my life.”

During the REU programs, some students had the opportunity to work across disciplines.

“I’m studying to be a mechanical engineer but I worked in a chemical engineering research lab,” said Mines mechanical engineering student Brockton Sterling. “I found that blending the two together really helped me. This experience shifted my interests quite a bit.”

In addition to the laboratory research, students participated in the Joint Networking Program for Front Range REU Students and Summer Interns on June 28. This event brought together undergraduate STEM majors from across campus and nearby internship and research programs to discuss topics including ethics in science and engineering, how to present scholarly research and transitioning academic skills into a career in STEM fields.

"The most important component of our undergraduate research enterprise is the Mines faculty and research staff that selflessly contribute their time, energy and expertise to our students," Stone said. "Initial, thoughtful, one-on-one training sessions with both an REU student and his or her peer mentor eventually leads to independence in the research environment. Along with this, students augment their research experience with a curricular thread that includes field trips to other research centers within the Front Range, a hands-on laboratory program, professional development sessions and weekly technical seminars. Joint networking programs with other nearby REUs and summer internship groups provide a social network that fosters an appreciation of other STEM areas.”

“I would definitely recommend this program,” Sterling said. “It’s very flexible and the amount of information you learn is great.”

At the end of the poster session, five students received awards for best poster presentations and best technical achievement:

Best Technical Achievement

  • Clare Lanaghan, Iowa State University, Faculty Mentor: Jeff Squier, Physics

Best Presentation

  • Austin Shelton, Morehouse College, Faculty Mentor: Jason Porter, Mechanial Engineering
  • Mayassa Gregoire, St. Joseph’s College, Faculty Mentor: Lakshmi Krishna, Physics
  • Rileigh Casebolt, Bucknell University, Faculty Mentor: Carolyn Koh, Chemical Engineering
  • Will Schenken, Colorado School of Mines, Faculty Mentor: Reuben Collins, Physics


2017 REU Summer Poster Session

Joe DelNero, Digital Media and Communications Manager, Communications and Marketing | 303-273-3326 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

Engineering researchers are putting an innovative two-story structure made of cross-laminated timber (CLT) panels through a series of seismic tests to gather scientific data that will enable design of mass timber buildings that can survive large earthquakes with little or no repair.

Colorado School of Mines Civil and Environmental Engineering Assistant Professor Shiling Pei is the lead researcher on the NSF-funded project, having conducted similar tests on a much smaller scale on Mines’ campus prior to this massive effort using the world’s largest outdoor shake-table in San Diego, California.

“Designing buildings that are safe even during large earthquakes is hugely important. We are doing that – and we are going further,” Pei said. “We are working to minimize the amount of time buildings are out of service after large earthquakes. We are also focused on cutting the costs required to repair them.”

The tests are being conducted at NHERI@UCSD, an experimental test site at UC San Diego funded through the NSF’s Natural Hazard Engineering Research Infrastructure (NHERI) program. The tests will produce data that will be used in the design of a new generation of tall mass timber structures up to 20 stories.

Researchers work on compeleting construction of the test-structure. Photo Credit: University of California San Diego Jacobs School of Engineering
Researchers work on compeleting construction of the test-structure.
Photo Credit: University of California San Diego Jacobs School of Engineering

“The overarching goal of this project is to propose a design methodology for seismically resilient tall wood buildings for regions with high seismicity, meaning the building can be quickly repaired after large earthquakes to minimize loss of use,” Pei said. “Several tests will be conducted at different shaking intensities representing frequent, design code level and maximum considered earthquake events.”

The 22-foot-tall structure will be put through a tremor simulating the 6.7 magnitude 1994 Northridge earthquake in the San Fernando Valley, but for twice as long. Researchers will collect data through more than 300 channels in three phases of testing on the building. Data will be generated at pre-selected points to measure how the CLT panels bend and how the panels move relative to each other.

Researchers are particularly interested in a system that allows the building to rock in response to an earthquake and how the walls and floors interact during shaking.

“We have tested the rocking walls by themselves in the lab, but as structural engineers, we know that the system is not equal to the sum of its parts. There are interactions between the parts. That’s why NHERI projects funded by the NSF are so critical. We are finally going to be able to get data on how the different components function as a system during strong earthquakes,” Pei said. 

In a so-called “rocking wall system,” vertical mass timber walls are connected to the foundation by post-tensioned rods that run up through the floor and special U-shaped steel energy dissipaters. The rods allow the walls to rock during an earthquake and snap back into their original upright position, minimizing deformation and resulting structural damage.

A consortium of universities is collaborating on the NSF project, including Mines, Colorado State University, University of Washington, Washington State University, Oregon State University, Lehigh University, University of Nevada Reno and University of California San Diego.

The two-story investigative testing also received support from multiple industrial partners including Katerra; Simpson Strong-Tie; Tallwood Design Institute; DR Johnson Lumber Co.; Forest Products Laboratory; City of Springfield, Oregon; Softwood Lumber Board; and MyTiCon Timber Connectors.

The NSF project also includes another large-scale test planned later this year at the NHERI-Lehigh testing facility. Based on the insights gleaned from this current set of tests and related research, the team will return to San Diego in 2020 to build, shake and ultimately burn an earthquake-resilient 10-story timber building on the UC San Diego shake table.

The project detail can be found on Ongoing activity at the outdoor shake-table of the Natural Hazards Engineering Research Infrastructure facility is live-streamed by webcam at  Photos are available on Flickr at

Agata Bogucka, Communications Manager, College of Earth Resource Sciences & Engineering | 303-384-2657 |
Emilie Rusch, Public Information Specialist | 303-273-3361 |

Colorado School of Mines Civil and Environmental Engineering Professor Marte Gutierrez, Petroleum Engineering Professor Azra Tutuncu and alumnus Luke Frash have been awarded the 2017 Applied Rock Mechanics Research Award by the American Rock Mechanics Association.

Luke Frash and Marte Gutierrez during a visit with Darren Mollot, Director of the Office of Clean Energy Systems in the Department of Energy’s (DOE) Office of Fossil Energy.
Luke Frash and Marte Gutierrez showcase their research during a visit from Darren Mollot, Director of the Office of Clean Energy Systems in the Department of Energy’s (DOE) Office of Fossil Energy.

Frash earned bachelor’s and master’s degrees in engineering with specialties in civil engineering and a PhD in civil and environmental engineering from Mines, studying under Gutierrez. He is now a researcher at Los Alamos National Laboratory in New Mexico.

The team is receiving the award for their 2015 publication, “True-Triaxial Hydraulic Fracturing of Niobrara Carbonate Rock as an Analogue for Complex Oil and Gas Reservoir Stimulation.” The main topics of research, funded partially by the U.S. Department of Energy and the Unconventional Natural Gas and Oil Institute, were development of enhanced geothermal systems and hydraulic fracturing in shale oil and gas reservoirs.

“Well stimulation by hydraulic fracturing is a common method for increasing the injectivity and productivity of wells,” Gutierrez said. “This method is beneficial for many applications, including oil, gas, geothermal energy and CO2 sequestration; however, hydraulic fracturing in shale and other similarly complex geologies remains poorly understood.”

Seeking to bridge the gap in understanding, the team conducted research on large natural rock specimens using true-triaxal stresses, intended to represent field-scale complexities of known oil and gas reservoirs.

“Results from such large-scale hydraulic experiments, particularly on naturally heterogeneous rock samples, remain very limited,” Gutierrez said.

The research team developed special equipment to conduct these innovative field-scale experiments, and Gutierrez says “the results from the scale-model hydraulic fracturing experiments are envisioned to be of important value to the practice of hydraulic fracturing in several fields.”

The award will be presented during the 51st U.S. Rock Mechanics/Geomechanics Symposium in San Francisco, California, on June 25-28, 2017.

Support for the research was provided by the Unconventional Natural Gas and Oil Institute (UNGI) Coupled Integrated Multi Scale Measurements and Modeling Consortium (CIMMM), and the U.S. Department of Energy under DOE Grant No. DE-FE0002760, “Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems.”

Agata Bogucka, Communications Manager, College of Earth Resource Sciences & Engineering | 303-384-2657 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

Amadeu Sum, associate professor of chemical and biological engineering, has been awarded the 2017 Arthur Lubinski OTC Best Paper Award by the American Society of Mechanical Engineers (ASME).

This prestigious recognition is awarded annually during the Offshore Technology Conference (OTC) by the ASME Petroleum Division to a contribution that has the highest impact on the offshore industry. The award is named after Arthur Lubinski, who created the ASME Study Committee for the Exchange of Offshore Information that led to the formation of OTC.

Greg Kusinski, Amadeu Sum, Joseph Gomes
From left to right: Greg Kusinski, Amadeu Sum, Joseph Gomes receive the award at the OTC2017 ASME Banquet.

Sum received the award for his paper “Hydrate Management for Systems with High Salinity Brines at Ultra-High Pressures,” coauthored with Yue Hu and Bo Ram Lee, Colorado School of Mines; Prasad Karanjkar, ConocoPhillips; Joseph Gomes, DeepStar; and Greg Kusinski, Chevron. This paper was selected from the hundreds of submissions that were presented at OTC2017 in Houston, Texas.

The work was inspired by an engineering challenge initiated by DeepStar, a joint industry technology development consortium of 12 oil and gas companies, seeking to support deepwater high-pressure, high-temperature (HPHT) field development activities in the Gulf of Mexico.

In order to conduct research in these extreme conditions, the research team engineered a novel HPHT experimental chamber in which a series of experiments was conducted. This work enabled the delivery of a computational model that can serve as a practical engineering tool for Industry to better predict undesired hydrate plug formations, allowing for optimization of methanol treatment.

Sum’s work verified and validated industry’s understanding of thermodynamics relative to hydrate formation in high salinity and HPHT systems, proving fundamentally important to the development of HPHT fields.

The Lubinski Best Paper Award was presented to Sum and his coauthors on May 1 at the ASME Best Mechanical Engineering Award Banquet.

Agata Bogucka, Communications Manager, College of Earth Resource Sciences & Engineering | 303-384-2657 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

16th Annual North American Mine Ventilation Symposium

Colorado School of Mines hosted the Society for Mining, Metallurgy and Exploration’s 16th North American Mine Ventilation Symposium, which provides mine ventilation engineers and technicians with the latest information and operating practices from the field, from June 17 to 22.

“With the help of the organizing committee, we assembled a strong, three-day program with technical papers and presentations organized in 20 sessions,” said Jürgen Brune, research professor in the Department of Mining Engineering.

More than 200 industry professionals, exhibitors and booth staff attended the symposium, exchanging ideas and research covering topics such as monitoring air contaminants and producing power-efficient ventilation and cooling systems. The symposium included short courses, technical sessions and even a mine tour.

Rick Brake, director at Mine Ventilation Australia, recieved the 2017 Howard L. Hartman Award, which recognizes distinguished contributions in practice, teaching or research in the field of underground ventilation engineering. Raja Ramani, a previous Hartman award winner and emeritus Deike chair and emeritus professor at Penn State University, gave the keynote address, "Underground Mine Ventilation: Progess and Challenges."

SME’s Underground Ventilation Committee initiated the symposium series, which has been held every two or three years since 1982 and it continues to provide “the latest scientific and technical updates to ventilation engineers and researchers worldwide,” Brune said.

View all of the photos from the event on Flickr.

Joe DelNero, Digital Media and Communications Manager, Communications and Marketing | 303-273-3326 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |

Colorado School of Mines hosted the American Society of Civil Engineers’ 30th Annual National Concrete Canoe Competition in Golden, Colorado, from June 17 to 19. Twenty teams from across the United States, Canada and even a team from China came to campus to showcase their unique watercraft.

ASCE’s concrete canoe competition challenges civil engineering students to apply their classroom lessons to solve a creative and difficult problem while working on a team. Getting a concrete boat to float is only part of the competition. Teams are scored based on an oral presentation, a design paper, the final product and the performance of the watercraft in five races, which were held at Evergreen Lake in Evergreen, Colorado.

More than 200 teams, including Colorado School of Mines, participated in regional events for a chance to compete at the national competition.

California Polytechnic State University, San Luis Obispo was the overall winner of the competition followed by the University of Florida and the University of Akron.

2017 ASCE National Concrete Canoe Competition

Joe DelNero, Digital Media and Communications Manager, Communications and Marketing | 303-273-3326 |
Mark Ramirez, Managing Editor, Communications and Marketing | 303-273-3088 |


Subscribe to RSS - Engineering